SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library
Keyword/Author:
After Date: (mm/dd/yy)  
 
Sort By:   Date Added  ▲  |  Publication Date  ▲  |  Title  ▲  |  Author  ▲
= Members Only
Conference Proceedings
EFFECT OF HYGROTHERMAL TREATMENT ON RHEOLOGICAL AND MECHANICAL PROPERTIES OF RECYCLED POLY(ETHYLENE TEREPHTHALATE)/ RECYCLED POLYPROPYLENE BLENDS
Siti Fatimah Aminuddin , Leong Yew Wei , Hiroyuki Hamada, May 2010
Poly(ethylene terephthalate) (PET) is one of the most important fibers for industrial production due to its high performance,low cost, and recyclability. The amount of waste that arise from post-consumer PET especially in the beverage industry have made recycling of poly(ethylene terephthalate) (PET) a beneficial effort in reducing environmental pollution. Studies of blends and composites using recycled PET have been carried out with several polymeric materials, like polyethylene and polystyrene. In this work, recycled poly(ethylene terephthalate)/ recycled polypropylene (RPET/RPP) blends was subjected to injection molding and then subjected to hydrothermal treatment in water bath at below transition glass temperature to determine the amount of moisture absorption. As polypropylene tends to degrade at a faster rate than poly(ethylene terephthalate), the results show that defect of polypropylene effect the tensile strength and modulus of the RPET/RPP blends.
PROPERTY VERIFICATION OF THERMOPLASTIC ELASTOMER BOTTLES PRODUCED FROM CUSTOM DESIGNED EXTRUSION BLOW MOLDING MOLDS
Daniel P. Dempsey , Millington Adkins IV, May 2010
Santoprene grade 201-87 is a commonthermoplastic vulcanizate (TPV) used in blow moldingbecause of its excellent melt strength which lends to lesssag in the parison and ultimately lower wall thicknessvariations and a higher achievable maximum blow up ratio(BUR). However 201-87 (TPV 1) also has a particularlyhigh durometer which becomes a disadvantage in dextralapplications.Santoprene grade 201-55 (TPV 2) is another TPVwith mechanical characteristics comparable to that of theTPV 1 but with a much lower durometer and maximumachievable blow up ratio. The objective of this study is theretention of mechanical characteristics of the two TPVgrades being subjected to increased additive amounts of apolymer modifier Vistamaxx 6102 (Additive 1).
A BIREFRINGENCE-FREE COMPRESSION MOLDING PROCESS FOR OPTICAL PLASTICS LENSES
Chao-Chang A. Chen, Feng-Chi Lee, May 2010
This paper investigates the process of precision compression-molding of plastics lenses with near-zero residual birefringence in the molded lenses. First, plastics preforms are injection molded by a conventional injection molding machine by net-shape molding technology. The preforms are then re-heated by infrared heaters and compressed under hydrostatic pressure conditions for form-finishing and stress-relieving. Once the preforms are heated above glass transition temperature, the moldings would release the frozen-in residual-stresses and retain the form accuracy via low compression pressure employed for shrinkage compensation. The compression molding process exhibits advantages of low process costs, high production efficiency, and good dimensional accuracy with zero-birefringence. First, experiments incorporated with Taguchi method are conducted for parameter optimization in residual stresses and form accuracy. The preliminary results show that plastic lenses optimized for form accuracy could have p-v values smaller than 0.35 micron plus RMS surface roughness less than 60 nm. More importantly, the plastic lenses are molded with little birefringence throughout the process.
FLOW FRONT ANALYSIS OF TIR LENS OF LEDS WITH INJECTION MOLDING
Chao-Chang A. Chen , Feng-Chi Lee, May 2010
This research is to investigate the TIR (Total Internal Reflection) lens as secondary optical element mounted on a LED for landscape and indoor illumination. The TIR lens is like a cone bell with the ratio of gate thickness to cavity thickness is about 1: 10. The simulation software Moldex 3D is used to simulate the melt front behavior for 3D filling. Experimental results show that injection speed mold temperature and melt temperature significantly affect the final quality of TIR lens. Molding parameters are obtained in this research to improve the optical performance and that can be applied on LED market in the future.
FLOW FRONT ANALYSIS OF TIR LENS OF LEDS WITH INJECTION MOLDING
Chao-Chang A. Chen , Feng-Chi Lee, May 2010
This research is to investigate the TIR (Total Internal Reflection) lens as secondary optical element mounted on a LED for landscape and indoor illumination. The TIR lens is like a cone bell with the ratio of gate thickness to cavity thickness is about 1: 10. The simulation software, Moldex 3D is used to simulate the melt front behavior for 3D filling. Experimental results show that injection speed, mold temperature and melt temperature significantly affect the final quality of TIR lens.Molding parameters are obtained in this research to improve the optical performance and that can be applied on LED market in the future.
PREPARATION OF HIGH MELT STRENGTH POLYPROPYLENE BY THE REACTIVE EXTRUSION PROCESS AND ITS FOAMING APPLICATION
Renato Bonadiman, Ocileide Custódio da Silva, Marco Elísio Marques, Tommi Reinikainen, May 2010
The reactive extrusion of maleic anhydride grafted polypropylene (PP-g-MAH) with ethylenediamine (EDA) as coupling agent was carried out in a co-rotating twin-screw extruder to produce long chain branched polypropylene (LCBPP). Part of PP-g-MAH was replaced by maleic anhydride grafted high-density polyethylene (HDPE-g-MAH) or linear low-density polyethylene (LLDPE-g-MAH) to obtain hybrid long chain branched (LCB) polymers. Compared with the linear PP, PE and their blends, the LCB polyolefins exhibit excellent dynamic shear and transient extensional rheological characteristics such as increased dynamic modulus, higher low-frequency complex viscosity, significantly enhanced melt strength and strain-hardening behaviors. LCB polymers also have higher tensile strength, tensile modulus, impact strength and lower elongation at break than linear polymer and their blends. Supercritical carbon dioxide (scCO2) was introduced in the reactive extrusion process. With the presence of scCO2, the motor current of twin extruder was decreased and LCB polyolefins with lower MFR, higher complex viscosity and increased tensile strength and modulus were obtained. This indicates that the application of scCO2 can reduce the viscosity of melt in extruder, enhance the diffusion of reactive species, facilitate the reaction between functional groups, and increase the LCB density. The foaming behavior of both linear and LCB polyolefins were studied. The results show that cellular materials produced from the LCB polyolefins have higher weight reduction, smaller cell size and better mechanical properties than those produced from the linear polymers.
INFLUENCE OF SURFACE TREATMENT ON RESOLUTION OF PRINTED SILVER TRACES
Renato Bonadiman , Ocileide Custódio da Silva , Marco Elísio Marques , Tommi Reinikainen, May 2010
Printed electronics is a promising technology to obtain electronic devices with low cost. Printing techniques using nano-size material particles at low temperatures can revolutionize the electronics industry in coming years. Therefore the challenge is to provide sufficient quality of interconnecting traces by the selection of appropriate materials and printing conditions more precise material deposition process and sintering. Adequate process control would lead to suitable electrical conductivity of printed interconnections. In this work the influence of surface treatment on polyimide polyester and polysulphone (PSU) and its effect on the resolution of printed silver traces was evaluated. It was possible to observe a high dependence between traces resolution and surface treatments.
INFLUENCE OF SURFACE TREATMENT ON RESOLUTION OF PRINTED SILVER TRACES
Renato Bonadiman , Ocileide Custódio da Silva , Marco Elísio Marques , Tommi Reinikainen, May 2010
Printed electronics is a promising technology to obtain electronic devices with low cost. Printing techniques using nano-size material particles at low temperatures can revolutionize the electronics industry in coming years. Therefore, the challenge is to provide sufficient quality of interconnecting traces by the selection of appropriate materials and printing conditions, more precise material deposition process and sintering.Adequate process control would lead to suitable electrical conductivity of printed interconnections. In this work, the influence of surface treatment on polyimide, polyester and polysulphone (PSU), and its effect on the resolution of printed silver traces was evaluated. It was possible to observe a high dependence between traces resolution and surface treatments.
FRACTURE BEHAVIOR OF JUTE/PP JUTE/GLASS FIBER/PP INJECTION MOLDINGS Jute/Glass Fiber/PP Injection Moldings
Tomoko Ohta , Tohru Morii , Yew Wei Leong , Hiroyuki Hamada, May 2010
This study deals with the fracture behavior and acoustic emission (AE) characteristics of jute fiber reinforced polypropylene composite. In general the mechanical properties of natural fiber reinforced composites are not so high and it is demanded to enhance them for actual application. Therefore jute and glass fibers hybrid PP ([GF/JF]/PP) composites were developed and the effect of fiber content on the tensile properties and fracture behavior was discussed through the AE characteristics. In [GF/JF]/PP composites the optimum fiber content for the improvement of tensile strength was determined and the tensile strength depended on the initiation of fracture detected by AE.
FRACTURE BEHAVIOR OF JUTE/PP, JUTE/GLASS FIBER/PP INJECTION MOLDINGS
Tomoko Ohta , Tohru Morii , Yew Wei Leong , Hiroyuki Hamada, May 2010
This study deals with the fracture behavior and acoustic emission (AE) characteristics of jute fiber reinforced polypropylene composite. In general, the mechanical properties of natural fiber reinforced composites are not so high, and it is demanded to enhance them for actual application. Therefore, jute and glass fibers hybrid PP ([GF/JF]/PP) composites were developed and the effect of fiber content on the tensile properties and fracture behavior was discussed through the AE characteristics. In [GF/JF]/PP composites the optimum fiber content for the improvement of tensile strength was determined, and the tensile strength depended on the initiation of fracture detected by AE.
SANDWICH STRUCTURE OF REINFORCED MATERIAL PREPARED BY INJECTION-PRESS MOLDING
Osamu Segawa , Hiroyuki Hamada, May 2010
Conventional sandwich molding process with a core layer of a plate type reinforced material is utilized with a special type mold attached slide cores. We studied a low cost process to mold a sandwich structure by performing an injection-press molding process that was one process of an injection compression molding process. This sandwich molding process was constructed with assembled a standard injection molding process and an injection-press molding process and was controlled a position of a core layer of a plate type reinforced material. As a result it was confirmed that this sandwich molding process was effective for controlling a position of a core layer of a plate type reinforced material and for improving strength of a sandwich structure. In addition this sandwich molding process was effective for reducing thickness of a sandwich structure and was contributed to lighten weight of a sandwich structure.
SANDWICH STRUCTURE OF REINFORCED MATERIAL PREPARED BY INJECTION-PRESS MOLDING
Osamu Segawa , Hiroyuki Hamada, May 2010
Conventional sandwich molding process with a corelayer of a plate type reinforced material is utilized with aspecial type mold attached slide cores. We studied a lowcost process to mold a sandwich structure by performingan injection-press molding process that was one process ofan injection compression molding process. This sandwichmolding process was constructed with assembled astandard injection molding process and an injection-pressmolding process, and was controlled a position of a corelayer of a plate type reinforced material. As a result, it wasconfirmed that this sandwich molding process waseffective for controlling a position of a core layer of aplate type reinforced material and for improving strengthof a sandwich structure. In addition, this sandwichmolding process was effective for reducing thickness of asandwich structure and was contributed to lighten weightof a sandwich structure.
SIMULATION DRIVEN MEDICAL PACKAGE DEVELOPMENT
Hossam M. Metwally, May 2010
The objective of this work is to demonstrate the concept of 'simulation driven package development'. The concept involves not only simulating the structural behavior of the medical package (e.g. under top loading), but also predicting the package material distribution due to the manufacturing process conditions and tying that to the structural analysis. The structural analysis will thus take the more physical, and usually non-uniform, part material thickness distribution into consideration. The concept is highlighted through a case study.In this study, numerical simulation is used to model the thermoforming process of a medical tray. Two different thermoforming processes are examined. The first is a simple drape forming technique where the sheet is formed over a male mold through vacuum. In the second, aiming at obtaining a more uniform material distribution, prestretching of the sheet is applied prior to the vacuum forming. The resulting material distribution is compared with that of the simple drape forming. The resulting degree of warpage at the end of the cooling step for the two cases is compared. Also, the effect of the different forming processes on the top loading behavior of the tray is studied.The resulting material distribution from each forming process is taken into account when performing the virtual structural test. Thus the concept of 'simulation driven package development' is highlighted.
FIBER LASER WELDING OF PLASTICS USING A SOLID HEAT SINK TRANSPARENT TO THE LASER BEAM TO PREVENT THERMAL DAMAGE
Satoshi Nagai, Akira Okamura, Wongsriraksa Patcharat, Kazushi Yamada, Yew Wei Leong, Hiroyuki Hamada, May 2010
This paper deals with the fiber laser welding of overlapped engineering plastic sheets, using a solid heat sink transparent to the laser beam to prevent thermal damage. A fiber laser whose wavelength is 1.9 ?¬m is used for the welding. It is hard to join transparent engineering plastics not using any laser-absorbing pigments with ordinary laser welding. So this novel laser welding procedure, which prevents thermal damage to the surface of the plastic, was proposed. A solid heat sink is placed in contact with the irradiated polymer sheet, helping to prevent thermal damage of the film surface. Thus, the proposed fiber laser welding system is successful in welding plastic sheets which are difficult to weld with CO2 laser.
FILM INSERT MOLDING BASED ON POLYOXYMETHYLENE AND POLY(LACTIC ACID): MORPHOLOGICAL CHARACTERISTICS AND INTERFACIAL ADHESION PROPERTIES
Satoshi Nagai , Akira Okamura, May 2010
The combination of polyoxymethylene (POM) and poly(lactic acid) (PLA) is possible due to their compatibility. Film insert moldings were fabricated by using PLA as the film while neat POM PLA and POM/PLA blends were as the substrate resin. The interfacial adhesion properties between the film and substrate were determined by means of micro-cutting analyses. Molding conditions were varied in order to determine the effects of substrate crystallinity and various morphological structures on the interfacial adhesion characteristics. The regions adjacent to the film-substrate interface were observed through ATR infrared spectroscopy and a correlation between structure and interfacial compatibility was attempted. Both POM and PLA traces could be found at the interfacial region which enabled the determination of the width of the interface. It was found that specimens with thick interfacial regions exhibit high interfacial strength.
FILM INSERT MOLDING BASED ON POLYOXYMETHYLENE AND POLY(LACTIC ACID): MORPHOLOGICAL CHARACTERISTICS AND INTERFACIAL ADHESION PROPERTIES
Satoshi Nagai , Akira Okamura , Wongsriraksa Patcharat , Kazushi Yamada , Yew Wei Leong , Hiroyuki Hamada, May 2010
The combination of polyoxymethylene (POM) and poly(lactic acid) (PLA) is possible due to their compatibility. Film insert moldings were fabricated by using PLA as the film while neat POM, PLA and POM/PLA blends were as the substrate resin. The interfacial adhesion properties between the film and substrate were determined by means of micro-cutting analyses. Molding conditions were varied in order to determine the effects of substrate crystallinity and various morphological structures on the interfacial adhesion characteristics. The regions adjacent to the film-substrate interface were observed through ATR infrared spectroscopy and a correlation between structure and interfacial compatibility was attempted. Both POM and PLA traces could be found at the interfacial region, which enabled the determination of the width of the interface. It was found that specimens with thick interfacial regions exhibit high interfacial strength.
SHARKSKIN MELT FRACTURE CHARACTERISTICS OF POLY (HYDROXY BUTANOIC ACID) COPOLYMERS
I. Nishi, S. Matsubara, Y. W. Leong, H. Hamada, A. Goto, May 2010
Recent advances have rendered bio-based and biodegradable PHB (poly hydroxybutanoic acid) copolymers suitable for many extrusion applications. The high molecular weight and narrow distribution of melt relaxation times of these polymers can sometimes cause sharkskin melt fracture to occur during extrusion. This may be a limiting factor for their wide-spread applicability. This presentation will discuss the characterization of sharkskin melt fracture of these polymers using capillary rheometry including the identification, for the first time, a critical criterion for their occurrence.
IMPROVEMENT OF IMPACT PROPERTIES OF RECYCLED POLY(ETHYLENE TEREPHTHALATE) (PET)INJECTION MOLDINGS RECYCLED POLY(ETHYLENE TEREPHTHALATE) (PET)INJECTION MOLDINGS IMPROVEMENT OF IMPACT PROPERTIES OF R
N. Kunimune , S. Tamada , T. Nagasawa , Y. Makata , Y.W.Leong , H. Hamada, May 2010
Recycling PET is emerging issue for protecting the earth environments and using petrochemical products effectively. R-PET has been used in the form of film fibers and sheet. In the industries R-PET injection moldings are demanded however there are still some problems in injection molding pellet making and properties of products. The most important problem is low impact strength. In this paper we found effective modifier of R-PET to increase impact strength. The effects of modifier contents on not only impact strength but static strength and rigidity were discussed.
IMPROVEMENT OF IMPACT PROPERTIES OF RECYCLED POLY(ETHYLENE TEREPHTHALATE) (PET)INJECTION MOLDINGS
N. Kunimune , S. Tamada , T. Nagasawa , Y. Makata , Y.W.Leong , H. Hamada, May 2010
Recycling PET is emerging issue for protecting the earth environments and using petrochemical products effectively. R-PET has been used in the form of film, fibers, and sheet. In the industries R-PET injection moldings are demanded, however there are still some problems in injection molding, pellet making and properties of products. The most important problem is low impact strength. In this paper we found effective modifier of R-PET to increase impact strength. The effects of modifier contents on not only impact strength but static strength and rigidity were discussed.
THE EFFECT OF LOW-ENERGY ELECTRON BEAM IRRADIATION ON PROPERTIES OF LOW-DENSITY POLYETHYLENE
Robert Barsotti, May 2010
The impact of low-energy electron beam irradiation on mechanical properties of Low Density Polyethylene was investigated. The electron energy was 150keV with dose ranging from 5 to 1000 kGy. The properties were evaluated through tensile, drop dart impact, and solvent resistance testing. The correlation between mechanical properties and morphological changes was also studied using melt flow index measurements and differential scanning calorimetry. Impact resistance was found to drastically improve and the elongation at break decreased with increasing dose. This indicates that cross-linking occurred upon electron irradiation and was confirmed by the results of crystallization and melt flow index measurements.


This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.




spe2018logov4.png

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers, ISBN: 123-0-1234567-8-9, pp. 000-000.
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net