SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library

Sort By:  Date Added   Publication Date   Title   Author

Conference Proceedings

Advanced Sequencing and Protection of Valve Gate Systems
Thomas P. Linehan, May 2002

The control of valve gate sequencing used to be limited to timers. The growing trend is to use screw position and even cavity pressure to determine when to open and close the valve gates in a hot runner system. In some cases, a combination of control parameters may be used.Sequencing systems can also be made to protect valve gate systems from misuse. For example, the accidental application of injection pressure when none of the valve gates are open can now be avoided; as can the exposure to high temperatures when mold cooling isn’t present.This paper intends to cover emerging advancements in both sequence control and protective elements.

Advances in Techniques to Determine Extensional Rheology from Capillary Measurements
M . Zatloukal, J. Vlcek, C. Tzoganakis, P. Sáha, May 2002

Flow through an abrupt contraction has been analyzed experimentally and theoretically through FEM simulations using the modified White-Metzner model. The results show that the 'entrance viscosity ?ENT' (entrance pressure drop divided by the shear rate) strongly depends on the shape of the steady extensional viscosity, the L/D ratio of the orifice die and it can be properly described by the newly proposed model. A Trouton Correction" was proposed and successfully tested to improve the capability of the entrance techniques to properly predict extensional viscosity at low extensional rates. It is demonstrated that the proposed improvements in this work help to more effectively evaluate extensional rheology from capillary measurements."

Advances on Filament Winding Technology to Produce Composites from Thermoplastic Towpregs and Coated Tapes
J.P. Nunes, J.F. Silva, P. Vieira, A.T. Marques, May 2002

Cost-effective glass-reinforced thermoplastic matrix towpregs produced by a developed powder coating line were used to manufacture composite structures by filament winding. A conventional filament-winding equipment was adapted for processing such structures at industrial scale.To increase the filament winding production rate, a die was introduced in a powder-coating unit to allow producing pre-coated tapes (PCT) from glass fiber/polypropylene (GF/PP) towpregs. The final properties determined on the produced structures, the technological advances of the filament winding process and the work developed to optimize production at industrial scale are presented and discussed.

Amine Modified Poypropylene as Adhesion Promoting Agent. Preparation and Characterization
S. Vazquez-Rodriguez, S. Sánchez-Valdes, O. Manero-Brito, May 2002

Polypropylene (PP) grafted with maleic anhydride (PPgMA) was modified with an excess of di-amines (DA) in the melt. The modified polymer (PPgDA) was characterized by FTIR, contact angle and wetting tension. FTIR results demonstrated that PP was modified with amine groups. Blends of PP with 0 to 100% wt of Polypropylene grafted with Diamine (PP-gDA) were prepared by melt mixing. From contact angle and wetting tension measurements it was observed changes in the surface polarity. The effect of the amine modified polymer content on the surface of cast films was characterized through contact angle and wetting tension measurements. The contact angles of water on cast film surfaces of PP/PPgDA blends decreases with increasing modified polymer content mean while the wetting tension shows an increment with the increasing of amine modified polymer.

Aminosilane Superficial Treatment of Lignocellulosic Fillers: Composite Preparation and Mechanical Properties
O.S. Rodríguez-Fernandez, L.L. Jimenez-Valdés, May 2002

Composite preparation including plasticized PVC and different lignocellulosic fillers was carried out. Different contents of fillers were used (20, 30 and 40% in weight), without modification and also treated with a coupling agent, N-(-2-aminoethyl)-3 aminopropyl trimethoxy silane at three concentrations (1, 2 and 3 %). Mechanical and rheological properties of the composites were evaluated. Electronic and optical microscopy was used to analyze the dispersion. Dynamic mechanical analysis was carried out to obtain Tan ?, Hook´s and Newtonian´s modulus.

Analysis of Carpet Recycle Streams Using Differential Scanning Calorimetry, Thermogravimetric Analysis and Gas Chromatography
John J. Tria, Kanda Kumar Balasubramanian, Michael K. Goodin, May 2002

In order to make an injection moldable product with consistent properties from recycled carpeting, quantitation of the polymeric and non-polymeric components of the carpet feed stream is required. Feed mixtures containing nylons, polypropylene and PET as well as latex and calcium carbonate from backing material have been studied. A combination of DSC and TGA measurements is shown to provide compositional data on both polymeric and non-polymeric components in a rapid and inexpensive manner. More exact determination of polyamide components is accomplished using hydrolysis and derivatization to prepare samples for gas chromatography.

Analysis of Extensional Viscosity Techniques for the Characterization of Fluoropolymers
Cattaleeya Pattamaprom, Nafaa Mekhilef, May 2002

Extensional flow properties of PVDF and PE having different molecular weights (Mw), molecular weight distribution (MWD), or degree of long chain branching (LCB) are investigated for film blowing application using the Rheotens melt tester. The Rheotens generates elongational flow by pulling an extruded polymer strand through a pair of toothed wheels and recording the pull down force F and the draw down ratio V. Extensional viscosity is converted from F-V relationship by two alternatives, one is the derivation proposed by Laun and Schuch (1), and the other is the more recent constitutive equations proposed by Wagner et al. (2). These methods are evaluated by comparing the resulting extensional viscosities to other methods including the Cogswell’s entrance pressure drop in a converging flow (3).

Analysis of Flow in Single Screw Extruders
Junsuo Sun, Chris Rauwendaal, May 2002

In the analysis of flow through a single-screw extruder, it is generally assumed that the kinematic condition, rotating barrel around a stationary screw (B), generates the same flow distribution as the kinematic condition, rotating screw inside a stationary barrel (A). Recently this assumption was questioned.This paper addresses the issue of kinematic reversal in detail. The steady state creeping flows in a single-screw extruder under kinematic conditions A and B will be investigated by theoretical analyses, and 3D numerical simulations using the CFD software, POLYFLOW. Both analytical and numerical results indicate that kinematic conditions A and B result in the same flow field. Apparent differences appear only when a flat plate approximation (FPA) is used. However, these differences are solely due to the fact that the FPA does not take channel curvature into account. When channel curvature is properly accounted for by using cylindrical coordinates, conditions A and B produce the same velocity distribution.These results indicate that the FPA should not be used with deep flighted screws because it introduces serious errors. Similarly, the analysis of both kinematic conditions by using the FPA inevitably leads to erroneous results. The error introduced by using the FPA analysis with a moving screw is even greater than with a moving barrel.

Analysis of Low Levels of Polyvinylpyrrolidinone in Polysulfone by FTIR and Pyrolysis GC/MS
Wayne K. Way, Charles Gloeckner, May 2002

FTIR and Pyrolysis GC/MS are two analytical techniques which we used to investigate the detection of polyvinylpyrrolidinone (PVP) as a low level impurity in polysulfone (PSO). These analyses are demonstrated to be convenient and rapid alternatives to time-consuming methods such as solvent extraction, when PVP is thought to be present as an impurity in PSO.FTIR analysis was performed by comparing the intensity of the IR absorption stretches of PVP and PSO. We selected absorbances at 1680 cm-1 and 1586 cm-1 for PVP and PSO, respectively. These absorbances were selected because of their relatively high intensity, and because they are well resolved from each other and from other strong absorbances. It was thus possible to detect and quantitate PVP in PSO to a level of 0.5%, with very good linearity of response. A significant advantage of this method is that it allows for rapid and non-destructive monitoring of the two blended polymers.Pyrolysis GC/MS was also used to investigate low levels of PVP in PSO. Comparison of the levels of certain unique and well resolved pyrolysis products (such as 2- pyrrolidinone from PVP and phenol from PSO) permitted detection and approximate quantitation of PVP in PSO, with a practical detection limit of 0.05%. EI+ ionization was used to produce a mass spectrum of the components of interest, which could be reliably identified by comparison to standard library reference spectra.

Analysis of Melt Instabilities of Poly-(Vinylidene Fluoride) in Shear and Extensional Flows
N. Mekhilef, E. Rondeau, C. Pattamaprom, May 2002

The melt instabilities of polyvinylidene fluoride (PVDF) were studied in shear and in extension using a capillary rheometer and Rheotens melt tester, respectively. In shear, emphasis was given to wall slip and melt fracture during extrusion in capillary dies. The combined effect of the critical stresses for melt fracture and slip to the appearance of the extruded strands for different die size, and polymer molecular weight were also studied. The results shows that PVDF exhibits a different mechanism of instabilities compared to the those known for polyethylenes. Additionally, wall slip was shown to occur starting at very low shear rates.

Analysis of Parameters Determining the Friction Properties of Thermoplastics in Injection Molding
E.C. Ferreira, R. Muschalle, N.M. Neves, A.S. Pouzada, May 2002

Frictional forces must be overcome during ejecting of parts molded over deep cores. The friction properties between the molding surface and the part are important for the design of the ejection system. Prototype equipment and test methods were already developed and proposed to characterize the friction properties in as-molding conditions.A factorial design of experiments was devised to establish the hierarchy of the parameters that affect the static friction in ejection. Two thermoplastics (PC and PP) and steel surfaces were considered. The parameters under study included: surface roughness, direction of machining with respect to the test direction and testing temperature.

Analysis of Silicone Polymers at Trace Levels by Pyrolysis Gas Chromatography/Mass Spectroscopy
Myer Ezrin, Gary Lavigne, May 2002

Silicone polymer release liner surfaces on paper, for self stick stamps and labels, become contaminants in paper recycling. Low print adhesion is one major problem limiting the inclusion of silicone release liners in recycling feed stock. A very sensitive method of analysis of silicone polymer during and after recycling employs pyrolysis GC/MS. The analysis provides a measure of siloxanes, ignoring inorganic silicon compounds such as silicates. The method also distinguishes between linear and branched polysiloxanes by different pyrolysis products. High sensitivity, to ppb, may be possible using single ion monitoring or selected ion data collection of mass spectra.

Analysis of TNPP in LLDPE Formulations: Did the Phosphite Hydrolyze during Processing?
Michael E. Gelbin, Kevin Jackson, May 2002

This report describes a simple solvent-based technique for the separation of tris(nonylphenyl) phosphite (TNPP) from a LLDPE (linear-low density polyethylene) resin, as well as subse-quent analysis. The solvent extracts" were ana-lyzed as is using 31P-NMR and/or liquid chroma-tography techniques. The analytical results showed that the main reaction product formed during the compounding step was tris(nonylphenyl) phosphate (PV) by way of phosphite (PIII) oxidation. It was further shown that the phosphite did not undergo any hydrolysis reaction as determined by analyzing for nonyl-phenol and "acid phosphite" levels. Lastly the HPLC method was shown to be viable in the concurrent analysis for both components in typically used phenolic and phosphite antioxidant blends."

Apparent Bulk Modulus as a Measure of Thermodynamic Equilibrium State
P. Slobodian, J. Vil?áková, P. Sáha, May 2002

Simultaneous volume and enthalpy relaxation behaviour of a-PMMA stimulated a by double-step temperature jump is studied. For both types of relaxation a memory effect following the up-jump can be observed, which is weakened by increasing of preannealing time. A constant relationship between both quantities during the sample expansion has been found. From the dependence of excess enthalpy vs. specific volume, an apparent bulk modulus, Ka, was calculated (Kubat, 1998). Its values increase with pre-annealing time and approach to a maximum value. The modulus can be used for quantification of the thermodynamic equilibrium.

Application and Considerations of Chemiluminescence in Polymer Degradation Studies
Lecon Woo, Craig L. Sandford, Henk Blom, May 2002

Digital electronic imaging using Charge Coupled Devices (CCD) has become popular due to its mass adoption in digital imaging applications. These sensors are moderate in resolution, extremely sensitive, offer wide dynamic range, and compared with photo-multipliers are capable of withstanding exposure to bright light without damage. These characteristics made CCD detectors ideal for chemiluminescence (CL) studies for polymer oxidative degradation.We have adapted a CCD imager with a differential scanning calorimeter (DSC) for simultaneous oxidative induction time (OIT) and CL studies. In addition, these CCD imagers are inherently area detectors, making them easily adapted for multiple sample studies or situations where sample heterogeneity exists. Advantages and considerations of CCD CL technique will be presented.

Application Design Advances through Plastics
Margaret H. Baumann, May 2002

Recent developments in plastic materials and processing have opened up product design opportunities that have been heretofore impossible. Designers have utilized plastic materials in a variety of new applications in automotive, consumer, packaging, personal care, electronics, sports and leisure, construction and appliance products.Plastic materials like thermoplastic elastomers, conductive and reinforced products, alloys and blends, etc. have enabled breakthrough designs and new functional products. Process developments like co-extrusion, multi-shot molding, foams and in-mold decorating have accelerated the penetration of plastics into new applications. Design and collaboration tools like CAD (computer-aided design) and rapid prototyping and tooling have contributed to reduction in the product development cycle and time to market.This presentation will review some case studies, which are illustrative and identify the challenges and the opportunities facing thermoplastics today and into the future.

Application of Ultrasound in the Determination of Fundamental Extrusion Performance: Residence Time Distribution Measurement
Z. Sun, C.-K. Jen, C.-K. Shih, D.A. Denelsbeck, May 2002

By means of new probe design and rapid data acquisition of 1,900 Hz repetition rate, we have succeeded in in-line ultrasonic monitoring of residence time distribution (RTD) at the melting, mixing, and pumping zones as well as at the die exit of a W&P 30-mm twin-screw extruder by mounting the ultrasonic probes on the extruder barrel over the screw elements. The experimental systems were LDPE, CaCO3 -filled LDPE and a Kraton/LDPE blend. For the first time the ultrasonic data of each of the extruder functional zones will be presented. The performance of the ultrasonic approach was evaluated against a conventional optical RTD measurement method by using an optical sensor side by side with one ultrasonic probe at the mixing zone of the extruder. Good agreements were obtained. An advantage of the presented ultrasonic technique is that in addition to RTD, it may provide simultaneously other process related information including material composition, filler dispersion, viscosity, etc.

Application of a New Internal Reflection Wave-Guide Coupling Technique to the Study of Polyaniline
Tao Liu, Robert J. Samuels, May 2002

Nondestructive three-dimensional refractive index measurements are used for the determination of both crystallinity and orientation in thin polymer films. The prism wave-guide coupler is particularly suited for three-dimensional isotropic and anisotropic thin film studies because of the quantitative character of the information obtained and the ease of data acquisition. It has been limited, however, to measuring the refractive index of transparent or weakly absorbing films. The present study show s that by using a modified prism wave-guide coupler it is possible to determine the complex refractive index over a range from transparent to highly absorbing films from the internally reflected light intensity. Thus both the refractive index, n, and the extinction coefficient coefficient, k, and hence the real, ?1, and imaginary, ?2, parts of the dielectric function, can be obtained. This method is used to determine the anisotropic three-dimensional ?1 and ?2 values of spin coated EB and HCl doped ES polyaniline films at two very different wavelengths.

Application of a Reliability-Based Methodology for Predicting the Outdoor Service Life of Polymers
Joannie W . Chin, Jonathan W. Martin, Tinh Nguyen, Edward Embree, Walter E. Byrd, James D. Tate, May 2002

Organic polymers are a commercially important class of materials that are being increasingly used in outdoor applications such as paints, coatings, sealants, siding and roofing membranes, to name just a few. One of the most damaging elements in the outdoor environment is ultraviolet (UV) radiation, both alone and in conjunction with moisture and temperature. Conventional ways of predicting the weatherability" or service life of a polymer involve either outdoor testing performed in real time or accelerated laboratory testing using artificial UV sources neither of which have proven to be entirely successful.The High Performance Polymeric Building Materials Group at NIST is developing a reliability-based methodology for predicting the service life of a polymeric material in outdoor environments. The NIST approach makes use of methodologies that are well-established in the biological and medical communities. In the course of advancing this new methodology a number of novel instruments for conducting UV exposures have been developed. The basis for the new predictive methodology and the novel instruments used for laboratory UV weathering will be discussed."

Application of an Online Rheometer to Evaluate the Melt Properties of PVC
Andreas Limper, Gordon Fattmann, May 2002

A portable online rheometer has been developed for characterizing plastic melts that can be used for different measurement applications. The rheometer is intended particularly for use in rigid PVC processing. An adapter mounted between the screw tip and the die implies that it is possible to conduct measurements on virtually all the different types of extrusion lines. During the development of the rheometer, particular value was set on having an instrument that is compact and universally deployable. Apart from viscosity curves, the rheometer can also be used to reveal wall slip effects.

  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net