The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.
Important Update: SPE's Technical Library Is Evolving The SPE Technical Library will be retired on September 15, 2025, as we transition to Polymer Insights—a powerful, AI-driven platform designed to transform how plastics professionals access and apply technical knowledge. Polymer Insights delivers answers and insights to your questions that are sourced entirely from SPE-curated content, including decades of peer-reviewed research, technical papers, and industry expertise. This new tool goes beyond search—providing intelligent, contextual results tailored specifically to you.
Open Access Preview: July 17–20, 2025
Be among the first to explore! From Thursday, July 17 through Sunday, July 20, Polymer Insights is open to all — no login required. Try it at www.polymerinsights.ai.
After July 20: Premium Members Only!
Don’t let this level of access end with the free trial!Starting on Monday, July 21, Polymer Insights will be exclusive to SPE Premium Members. Join SPE as a Premium member to keep unlimited access to this revolutionary tool!
Analysis of film blowing process using a transient, axisymmetric, non-isothermal, viscoelastic model is presented in this paper. The model developed is solved using the finite element method. Constitutive behavior of the polymer is described using a combination of modified Phan-Thien-Tanner model and anisotropic Kelvin-Voight model. A simple crystallinity model is used to describe the phase change and crystallization kinetics. Steady state solutions predicted by the model are compared with experimental results, these results along with transient results are presented in this paper.
Engineering materials - such as nylon polycarbonate and the like - have a molecular attraction for moisture and are hygroscopic polymers. When exposed to a humid atmosphere these materials take up and retain water. However this process can be reversed if the pellets are exposed to an artificial environment where the air temperature and dewpoint is precisely controlled for a pre-determined length of time. A good understanding of four fundamental drying parameters along with the basic principles of operation of a dehumidifying dryer are essential to troubleshooting a drying system."
Ultrasonic welding is used in many applications. The benefits of the welding process include: elimination of consumables, fast cycle times, compact machine footprint, and relatively low cost capital investment. New advances in ultrasonic products and technology make this method possible for applications not previously suitable for ultrasonics. Today’s equipment can program and profile weld and hold force as well as amplitude during the weld cycle. Also, new frequencies have been introduced which expand the capabilities of horns and energy transmission.
The focus of this paper is to probe the aspect of Human Capital in today's growing companies. Human Capital is the sum of the intangible pieces of a company outside of its physical assets. Human Capital is more than human resources, more than training. Human Capital and the way it's used defines the success of a company. This paper will uncover how to understand and how to develop it in our companies. Case studies will give the benefits of developing the greatest asset we have in Human Capital.
The consumer judges the quality of all products, including plastics, in part by the color and appearance of those products. One issue involved is the determination of the target color for a product. This is essentially an issue of agreement between customer and vendor. Possibly more important, is the determination of an acceptable tolerance. What is deemed acceptable color, and what is unacceptable. What tolerance scheme should we use, and how do we determine what is an acceptable limit? This paper has been written to explore these important issues.
This project is structured around the idea that Polyvinylidene Floride (PVDF) is an expensive engineering grade resin. This research will attempt to use nanometer sized glass filler with the virgin material at the correct loading to attain the desired properties and become more cost effective. The glass filler will compliment the chemical resistance of the PVDF which is one of its most desired properties, as well as, increase the flame retardance of the manufactured product.
Several companies and institutions contributed to a project for which thick-walled gas tube connectors were injection molded of high-density polyethylenes applying different molding parameter combinations. Connectors were mechanically tested, and numerical simulations of injection molding were carried out. With a simple ranking method it was possible to show correlations between performance under internal pressurization and predictions of shear rates, shear stresses, and thermal shrinkage differences between different locations.
S.C. Barwick, A. Sinha, T.D. Papathanasiou, May 2002
Establishing a quantitative linkage between materials, method of fabrication, and the final properties and on-site performance of a manufactured component is a key requirement for the further usage of composite materials in critical applications. Detailed and large-scale topological characterization is an essential first step in this direction. Here we show how Large Area Automated Microscopy (LAAM) can be used to characterize fiber-reinforced composites by detecting (1) fiber misalignment and (2) porosity.
Chunxia He, Paula Wood-Adams, Robert L. Sammler, Teresa P. Karjala, May 2002
The linear viscoelastic properties of a series of new molecularly designed polypropylenes were studied. The high melt strengths of these gel-free materials make them suitable for a wide range of applications. The results of dynamic measurements were combined with creep compliances to provide broad experimental windows. The impact of changing molecular structure on the relaxation spectrum is elucidated and compared with that metallocene polyethylene.
With the increasing demand for weight reduction in vehicles, the electronic devices are becoming more compacted, and the plastic fixtures for the electrical components are becoming more complicated. In this paper, the warpage of a plastic latch housing is investigated using Moldflow Plastics Insight (MPI). Inside this housing, several copper traces are embedded. Proper boundary conditions are applied within MPI and the predicted warpage matches well with the prototype results.
This literature survey focuses on the phenomena of wear that occur in screw-barrel systems. Some studies have shown that various types of wear occur in the individual zones of the screw depending on the materials processed and process parameters. Abrasion, corrosion and adhesion are the factors that limit the service life of the processing machines, especially as the overlapping of several mechanisms, that occurs sometimes, lead to accelerated wear.
This paper introduces a new method for representing the color composition of an object as a space diagram. A computer program for digital image analysis generates the cage-like tridimentional CIE L*a*b* spectrum of a test sample's image acquired from a high resolution flatbed scanner or color camera and calculates the detailed population distribution of all individually color-coded pixels composing the image. This makes it possible to determine quantitatively the sample's homogeneity, either by differential color population analysis in the L*a*b* cage, or by plotting a 3D-Chromography of the sample in the three individual L*, a* and b* modes separately, thus revealing all possible defects or color deviations in the sample.
The simulation of injection molding has considerably gained in importance for mold design as well as for process design. Therefore, at IKV a 3D-simulation program based on finite elements has been developed, which has recently been enhanced through a module for the calculation of fiber orientation in short fiber reinforced parts. For reasons of numerical efficiency the simulation program makes use of a tensor model for the description of fiber orientation.Mechanical and optical properties of polymers are to a large extent influenced by morphological properties, especially by the degree of crystallization. Therefore, a model for the calculation of crystallization kinetics is currently being implemented into the simulation software.
Soft polyolefinic TPEs are increasingly being favored over PVC based TPEs for automotive interiors. The major drivers for this change are the recycling and environmental aspects of PVC. Some strengths of polyolefinic TPEs are good low temperature performance, retention of properties after exposure to sunlight and high temperatures, low fogging, and little or no odor. The challenges in switching from PVC to polyolefinic TPEs involve attaining the desired melt processing characteristics and the mechanical and aesthetic properties at a relatively low cost. This paper will discuss Eliokem's use of a specialty acrylate elastomeric modifier in designing polyolefinic TPEs for automotive interiors and other applications
Craig Bastian, David Marshall, Riichi Nishimura, Joseph Silbermann, Takahiko Sugaya, Kazuhisa Tajima, May 2002
This paper describes acrylic-based resin compositions for use in co-extrusion over various substrates including PVC, ABS and CPVC. These acrylic compositions exhibit significantly improved weathering performance along with excellent impact strength when compared to existing vinyl-based compositions used in applications such as siding, windows and fencing.The acrylic-based compositions require the use of some modifiers to improve impact strength, gloss, flow and other physical properties. A comparison between the modified acrylic-based resin and PVC resin is discussed.
Until recently, there has been no extensive research done to predict small molecule permeation through polymer membranes using computer analysis. Advances have been made using finite element analysis software to help to try to predict this phenomenon. This has been successfully completed with two-dimensional models, but has not been performed on a three-dimensional model, which is necessary for products such as blow molded bottles. This paper will analyze a three-dimensional finite element analysis and compare those results to hand calculations to determine if finite element analysis software can serve as a reliable mean of analysis for permeation.
John C. Schmidhauser, John R. Murphy, Michael Bailey, May 2002
Blends of metallocene polyolefins and acrylate monomers are a new technology which provide materials with an attractive combination of physical properties. To utilize this new technology in as large a number of application areas as possible, modification of the surface adhesion properties of the cured blends is desired. A study of the effect of additives on the adhesion properties of representative blends has been carried out. The additives include monomeric, oligomeric and polymeric compositions. Functionality on these additives included groups that are expected to participate in the cure chemistry, as well as non-reactive additives. The effects of these additives on adhesion to typical inks, paints and coatings will be described.
V. Ronesi, W. Cheung, S.P. Chum, A. Hiltner, E. Baer, May 2002
The effects of styrene content and temperature on the adhesion of ethylene-styrene copolymers (ES) to low density polyethylene (LDPE) were examined by measuring the delamination toughness of LDPE/ES microlayers in the T-peel test. Experiments on microlayers with relatively thin (8 to 18?m) ES layers demonstrated that delamination toughness was proportional to ES layer thickness. Excellent adhesion was observed between LDPE and ES. Increased styrene content led to decreased delamination toughness. Major transitions in delamination toughness and delamination mechanism were observed at the glass transition of the ES and the ?-transition of the LDPE.
The adhesion of polypropylene (PP) to blends of a metallocene and a Ziegler-Natta polyethylene (PE) was highly dependent on the density of the metallocene PE. The systems with the lowest density metallocene PE showed the highest adhesion to PP. This finding supported the hypothesis that a layer of low molecular weight, amorphous chains, originating from the Ziegler-Natta PE, formed at the PP/PE interface. The lower density metallocene PE was believed to misciblize the amorphous chains of the Ziegler-Natta PE and prevent their migration to the interface, thus improving adhesion to polypropylene.
Adipic acid based polymeric plasticizers are the workhorses of the polymeric plasticizer market. They offer a useful combination of softening efficiency and permanence at a cost that is reasonable as polymeric plasticizers go. One property of polymeric adipates that does not quite meet the performance requirements of vinyl com pounders is low temperature flexibility. In particular the wire and cable industry requires improvement in low temperature properties to pass the lower brittleness temperature tests that resulted from post-NAFTA harmonization of the Canadian and U.S. standards for electrical insulation. In addition, while the viscosities of adipates are not high relative to polymeric plasticizers based on other chemistries, lower viscosity for equivalent molecular weights is a characteristic that would be desired by anyone handling polymeric plasticizers. The lower viscosity also accounts for processability improvements in vinyl.This paper will introduce a new adipic acid based plasticizer developed by Velsicol Chemical Corp. that lowers the brittle temperature of a vinyl com pound by 3 to 4 °C over Admex 6996®, a benchmark plasticizer of the same molecular weight. Permanence characteristics and softening efficiency are similar to the performance of the benchmark. The viscosity at 25°C is 25% lower than conventional adipates of equal molecular weight.
Kim McLoughlin Senior Research Engineer, Global Materials Science Braskem
A Resin Supplier’s Perspective on Partnerships for the Circular Economy
About the Speaker
Kim drives technology programs at Braskem to develop advanced polyolefins with improved recyclability and sustainability. As Principal Investigator on a REMADE-funded collaboration, Kim leads a diverse industry-academic team that is developing a process to recycle elastomers as secondary feedstock. Kim has a PhD in Chemical Engineering from Cornell. She is an inventor on more than 25 patents and applications for novel polyolefin technologies. Kim is on the Board of Directors of SPE’s Thermoplastic Materials & Foams Division, where she has served as Education Chair and Councilor.
A Resin Supplier’s Perspective on Partnerships for the Circular Economy
About the Speaker
Gamini has a BS and PhD from Purdue University in Materials Engineering and Sustainability. He joined Penn State as a Post Doctorate Scholar in 2020 prior to his professorship appointment. He works closely with PA plastics manufacturers to implement sustainability programs in their plants.
A Resin Supplier’s Perspective on Partnerships for the Circular Economy
About the Speaker
Tom Giovannetti holds a Degree in Mechanical Engineering from The University of Tulsa and for the last 26 years has worked for Chevron Phillips Chemical Company. Tom started his plastics career by designing various injection molded products for the chemical industry including explosion proof plugs and receptacles, panel boards and detonation arrestors for 24 inch pipelines. Tom also holds a patent for design of a polyphenylene sulfide sleeve in a nylon coolant cross-over of an air intake manifold and is a Certified Plastic Technologist through the Society of Plastic Engineers. Tom serves on the Oklahoma Section Board as Councilor, is also the past president of the local Oklahoma SPE Section, and as well serves on the SPE Injection Molding Division board.
Joseph Lawrence, Ph.D. Senior Director and Research Professor University of Toledo
A Resin Supplier’s Perspective on Partnerships for the Circular Economy
About the Speaker
Dr. Joseph Lawrence is a Research Professor and Senior Director of the Polymer Institute and the Center for Materials and Sensor Characterization at the University of Toledo. He is a Chemical Engineer by training and after working in the process industry, he has been engaged in polymers and composites research for 18+ years. In the Polymer Institute he leads research on renewably sourced polymers, plastics recycling, and additive manufacturing. He is also the lead investigator of the Polyesters and Barrier Materials Research Consortium funded by industry. Dr. Lawrence has advised 20 graduate students, mentored 8 staff scientists and several undergraduate students. He is a peer reviewer in several journals, has authored 30+ peer-reviewed publications and serves on the board of the Injection Molding Division of SPE.
Matt Hammernik Northeast Account Manager Hasco America
A Resin Supplier’s Perspective on Partnerships for the Circular Economy
About the Speaker
Matt Hammernik serves as Hasco America’s Northeast Area Account Manager covering the states Michigan, Ohio, Indiana, and Kentucky. He started with Hasco America at the beginning of March 2022. Matt started in the Injection Mold Industry roughly 10 years ago as an estimator quoting injection mold base steel, components and machining. He advanced into outside sales and has been serving molders, mold builders and mold makers for about 7 years.
84 countries and 85.6k+ stakeholders strong, SPE
unites
plastics professionals worldwide – helping them succeed and strengthening their skills
through
networking, events, training, and knowledge sharing.
No matter where you work in the plastics industry
value
chain-whether you're a scientist, engineer, technical personnel or a senior executive-nor
what your
background is, education, gender, culture or age-we are here to serve you.
Our members needs are our passion. We work hard so
that we
can ensure that everyone has the tools necessary to meet her or his personal & professional
goals.
Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:
Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers, ISBN: 123-0-1234567-8-9, pp. 000-000.
Available: www.4spe.org.
Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.