SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library
Keyword/Author:
After Date: (mm/dd/yy)  
 
Sort By:   Date Added  ▲  |  Publication Date  ▲  |  Title  ▲  |  Author  ▲
= Members Only
Conference Proceedings
Polyester Compositions for Automotive Tube Coatings
Sarah Grieshaber, Lenar Abbasov, Andrew Sics, Scott Davis, Tianhua Ding, May 2014
Polyester blends were evaluated as a replacement for nylon in automotive metal tube coating applications by investigation of long-term chemical resistance and adhesion to metal. Resistance to many common automotive fluids and fuels was observed for up to 5000h of exposure at 60 °C. Adhesion to metal was achieved without the use of a primer, which is an advantage over nylon materials and has potential to facilitate the production process by eliminating the use of primers.
Bioepoxy / Glass Fiber Composites
Johannes Möller, Christopher Kuncho, Daniel F. Schmidt, Emmanuelle Reynaud, May 2014
The present study focuses on the development of bioderived epoxies and their composites. Epoxidized linseed oil has been cured using both amine and anhydride hardeners, with curing time and temperature adjusted to maximize Shore D Hardness in the neat resin. Both resins were then used to manufacture glass fiber composite coupons that were tested in flexure. The properties of the anhydride cured bioepoxy composite were significantly better than the amine cured equivalent, and approached those of a composite based on a high performance petroleum derived anhydride cured epoxy.
Investigation of Scale-Up Methodologies in Twin-Screw Compounding
Graeme M. Fukuda, Daniel Chavez, David I. Bigio, Paul Andersen, Mark D. Wetzel, May 2014
Polymer composites involve the compounding of a base polymer and a solid additive. To maximize the impact of the additive on the polymer matrix, it is critical to have good mixing. However, before the product is processed at an industrial level the materials are often studied at a laboratory scale to save resources. The importance of a consistent product between the two extruders dictates the need for a scale-up rule sensitive to dispersive mixing.
Three Parameter Analysis of Fiber Orientation in Fused Deposition Modeling Geometries
Jason R. Nixon, Benjamin Dryer, Derrick Chiu, Inna Lempert, David I. Bigio, May 2014
The ability to track fiber orientation of a filled polymer matrix in the fused deposition modeling process is critical to the development of variable material properties in 3D printed parts. Using the Moldflow injection molding analysis package, a study has been done on the effects of injection rate, filler volume fraction, and nozzle geometry on final fiber orientation in the extruded strand produced by the fused deposition modeling process.
Gas-Assist Injection Molding of PLA for Foaming Applications
Lun Howe Mark, Raymond K. Chu, Aboutaleb Ameli, Davoud Jahani, Peter Jung, Chul B. Park, May 2014
The integration of gas-assist with foaming technologies was recently unveiled as a new technological development for microcellular foam injection molding. This work investigates the effect gas-assist processing on the final cellular structure of foam injection molded products. Typical gas-assist parameters including the holding pressure, holding time, ramping and start delay were examined. It was found that the application of gas-assist can improve or deteriorate the cellular structure depending on the processing parameters.
New Methods for Producing Energy Savings when Using Hot Runner Systems
Paul Boettger, May 2014
The heat produced by heaters in hot runner systems keeps the resin in melt conveying channels of injection molds molten. The molten resin is then injected into the cavity of the injection mold. Some of the heat produced will be lost to the surroundings. This paper will show how new methods and materials can reduce the amount of energy lost from hot runner systems and result in additional cost savings.
Gas Phase Reaction for Surface Modification of Nanocrystalline Cellulose (NCC)
Vahid Khoshkava, Musa R. Kamal, May 2014
The effect of surface modification on NCC polarity was first studied based on ambient surface energy measurements. NCC film was used as a model system to check feasibility of alkyenyl succinic anhydride (ASA) for this purpose. Both polarity and total surface energy of NCC decreased after surface modification. NCC porous structure consisting of nanofibers was exposed to ASA gas for different exposure times (1 h and 3 h). The reaction between NCC and ASA was confirmed by solid state 13CNMR and ATR-FTIR.
Accelerated Weathering Insights into ASA Polymers UV Resistance
Steve Blazey, Brian Struchen, May 2014
ASA polymers (Acrylonitrile-Styrene-Acrylate) represent one family of weatherable polymers often used in outdoor applications requiring long term color and physical properties retention. Their resistance to UV degradation is achieved through the selection of the ASA rubber modifier, choice of SAN (Styrene Acrylonitrile) copolymer, colorants, antioxidants and UV stabilizers along with other additives optimized for the application performance. Accelerated weathering testing offers valuable insights into the UV resistance of colored ASA polymers.
Optimization of Number of Gates in Injection Molding
Won-Gil Ryim, Byung-Gi Pyo, Hyung-pil Park, May 2014
In designing mold for bigger part it is important to determine number of gates. Excessive gates make loss of resin in gates and runners. Mold with many gates does not guarantee better mold filling condition. Automatic optimization system for number of gates is developed with objective function which represents the efficiency of gate. This paper discusses about the factors which are considered in development of optimization system and some application cases are followed.
M2M, Big Data and Injection Molds
Thomas Knight, May 2014
This paper will observe how advancements in M2M interaction, coupled with advancements in data storage and analysis (Big Data), are changing the way that businesses make decisions. We will examine how M2M and Big Data advancements can be applied to plastic injection molds to optimize output and to increase the mold’s reliability.
Overview of Different UV-Techologies, Piano Black Surfaces and Other Potential Colourings
Dagmar Ehmann, Logan Mays, May 2014
Overview of different UV technologies
Effect of Ground Calcium Carbonate Particle Size Distribution, Milling Method and Impurities on Abrasion Properties of Highly Filled Vinyl Formulations
Lane G. Shaw, David Yu, May 2014
Ground Calcium Carbonate (GCC) is composed of a relatively soft mineral known as calcite with a Mohs hardness of 3. However, all ground calcium carbonate contains small amounts of harder minerals such as dolomitic limestone (dolomite) and/or silica. These materials may or may not increase the abrasiveness of the ground calcium carbonate at any given particle size dependent on the concentration, morphology and particle size of the impurity.
Thermal Conductivity Improvements for Plastics Through the Use of Engineered Boron Nitride
Steve E. Amos, May 2014
Most plastic materials are insulators having very low thermal and electrical conductivity. Many different types of fillers are added to provide increased thermal conductivity but they can have deleterious effects on physical properties or cause increased electrical conductivity which may not be desired. New grades of hexagonal boron nitride are introduced that can provide increased thermal conductivity with improved physical properties. Thermal conductivity is improved without significantly changing the electrical conductivity.
Novel Approach in Fabrication of Printed Metal Tooling
Liezl Wee Sit, Carol Barry, John Shearer, Joey Mead, Mayur Kumbhani, Josue Acevedo, May 2014
A novel additive manufacturing approach was investigated for fabrication of steel tooling with microstructured surfaces. Varying processing parameters (printing pressure and speed) as well as material viscosity provided better control of microfeature height and width. Viscosity significantly affected feature uniformity, with higher viscosity materials producing narrow lines and more uniform feature heights. This tooling was unchanged after 5000 injection molding cycles, and so, has great potential as microstructured tooling for microfluidic devices.
Cemented Tungsten Carbide: An Innovative Material for Custom Core Pins in the Plastic Injection Molding Industry
Frank Rymas, May 2014
Cemented tungsten carbide has revolutionized productivity in many applications throughout many industries and when used as a material for core pins has proven to reduce cycle time, increase core pin rigidity and extend core pin life in the plastic injection molding industry resulting in significant cost savings. To achieve profitability in the increasingly competitive global marketplace plastic injection molding companies must operate with maximum efficiencies and minimal unplanned downtime.
From Single Batch Process Control to Multiple Batch Processes Control: A Review and a Perspective for Injection Molding
Furong Gao, Zhixing Cao, Jingyi Lu, Yi Yang, May 2014
This paper discusses control problem on batch processes, especially takes injection molding as an example. In the first part of the paper, the achievements about controlling single injection molding are reviewed. Motivations, advantages and challenges on controlling multiple batch processes together are addressed in the second part. Some detailed discussions from different perspectives of multiple batch processes control are illustrated as well to shed some light on future research.
Using Rheology to Understand Silcone Elastomers
Mary A. Krenceski, Huiping Zhang, May 2014
Silicone thermoset elastomers are increasingly being used in over-molding or co-molding applications with thermoplastic polymers. Understanding the fundamental properties of silicone formulation components and the material property changes that occur during crosslinking is essential to successful molding and use. Rheological and dynamic mechanical characterization are outstanding tools for building an understanding of silicone thermal and elastic properties, as well as the cure reaction chemistry that takes place during silicone molding processes.
Enabling Durable Polymer Sheet and Films for Building and Construction Applications
Stephen M. Andrews, Markus Grob, Wiebke Wunderlich, May 2014
This paper will review the development and attributes of next generation UV-light blocker technologies for engineering plastic glazing, sheet, and film used in the building & construction industry. Performance data in various polymer families will be reviewed to demonstrate the value of these products in enabling polymer materials to achieve the longevity required for durable weatherable applications.
Recycled Polymers in Injection Molded PP Ridge Vents
Sudhir B. Railkar, Walter Zarate, Peter Campbell, Charles Lake, Jeffrey Avitabile, Leslie Peels, May 2014
Injection molded accessory products are widely used in residential and commercial roofing systems. These products generally require complex polymeric formulations to meet roofing functionality. With the growth of polymeric accessory products, significant post-consumer recycled streams are available. The goal of this paper is to discuss performance of several post-consumer recycled PP streams in injection molded PP formulations while maintaining performance attributes.
Modified PEBA for Direct Adhesion to EFEP
Sabine Fleming, John Felton, May 2014
New modified (Polyether Block Amides) offer tubing manufacturers a means of producing multi-layer fluoropolymer catheters via a co-extrusion method instead of the traditional manner of hand building a catheter. The ability to manufacture catheters without the need of etching or an adhesive layer provides for ease in manufacturing, reduction in costs, and improved adhesion between the different layers. In providing a modified PEBA which adheres directly to EFEP increases the catheter manufacturers the opportunity to produce safe, durable products.


This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.




spe2018logov4.png

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers, ISBN: 123-0-1234567-8-9, pp. 000-000.
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net