The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.
The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?
Esra Kucukpinar, Dilhan M. Kalyon, Paul P. Tong, May 1999
Linear low density polyethylene (LLDPE) produced using metallocene catalysts is gaining prominence as a class of new polyethylenes with superior performance. Two recently commercialized metallocene-catalyzed linear low density polyethylene resins were characterized in terms of their storage and loss moduli, shear viscosity, shear stress growth, stress relaxation upon cessation of steady shear, and first normal stress difference material functions. Overall the rheological behavior reflects the relatively narrow molecular weight distributions of the resins. The oscillatory shear and relaxation moduli data were employed to determine the parameters of Wagner model. Various material functions, determined on the basis of this model in conjunction with the fitted parameters, agreed reasonably well with the experimental results. The reported data and parameters should facilitate an improved understanding of the processability characteristics of these two new LLDPEs.
A new mathematical model of the flow and heat transfer occurring in the fully-flighted regular flighted" screw elements of the co-rotating twin screw extruder is developed. The method avoids the unwrapping of the screws and solves the conservation equations using a realistic replication of the actual channel geometry. The numerical solution of the conservation equations is accomplished using the three dimensional Finite Element Method. The technique allows a wide range of processing features including the effects of the gap thickness between the barrel and the screws to be investigated. Here typical isothermal results are presented for two generalized Newtonian fluids i.e. Bingham and Ostwald-de Waele "Power-Law" fluids."
It is important to assess the conditions under which the migration of particles becomes important during rheological characterization of filled polymers. Such migrations may become important during nonhomogeneous flow where gradients in shear rate induce particles to move away from high shear rate regions resulting in nonhomogeneous concentration distributions and the blunting of velocity distributions. Using the mathematical model of Phillips et al., a finite difference numerical solution was developed to assess the importance of particle migration effects in pressure-driven viscometric flows.
Elvan Birinci, Rahmi Yazici, Dilhan M. Kalyon, Mark Michienzi, Constance Murphy, Richard Muscato, May 1999
Continuous processing of filled elastomers by twin screw extrusion and achievement of viable mixing distribution characteristics present formidable challenges. In this work a thermoplastic elastomer, HyTemp, was plasticized with DOA and filled with ammonium perchlorate powder and additives. It was found that the extruder geometry, the order of ingredient addition and die pressurization have profound effects on the mixing distribution characteristics of the elastomer based extruded profiles. The mixing distribution characteristics were quantitatively determined by x-ray diffraction techniques.
Mandar Rege, Suphan Kovenklioglu, Rahmi Yazici, Dilhan M. Kalyon, Elvan Birinci, Alan Allred, May 1999
The work presented here involves the coating of inert particles by an elastomer. The plasticized elastomer is first dissolved in an organic solvent and is mixed with water in which the inert particles are slurried. Due to the miscibility of the organic solvent and water, the elastomer gels and coats the inert particles. The coated particles further coalesce to form the molding powder of desired size range. This paper addresses the dynamics of the coating operation and the role of process parameters on the extent of coating and particle size distribution.
The morphology and crystallinity of plastics articles are influenced by several parameters, in particular the pressure and the temperature history during solidification. In this study, the crystallization kinetics and the PVT behavior of a high-density and linear low-density polyethylene resins were evaluated and compared using a high-pressure dilatometer under both isothermal and isobaric conditions. Also, the PVT behavior was compared to the predictions of the Tait equation of state. It was found that the induction time increases with increasing pressure, suggesting that pressure delays crystallization.
The hot water resistances of three kinds of short glass fiber or glass bead-reinforced plastics [polyphenyleneether (PPE), polyphenylenesulfide (PPS), and polyoxymethylene (POM)] were studied by hot water immersion tests and tensile tests. It was found that the tensile strengths of these plastics decreased and that the change of the strength was most remarkable in glass fiber-reinforced PPS (GF-PPS). Scanning electron microscope (SEM) observations of the tensile fracture surface revealed that the change in tensile strength was attributable to the deterioration of the interface between the glass fiber and the matrix resin. Although the change in the tensile strength of glass fiber-reinforced PPE (GF-PPE) was small compared with that of GF-PPS, debonding between the glass fiber and the matrix resin and surface cracks were observed on the surface of the GF-PPE specimens.
Environmental stress cracking (ESC) of acrylonitrile-butadiene- styrene (ABS) co-polymer caused by two kinds of non-ionic surfactants was studied by edge crack tension (ECT) tests. The dependence of the ESC on temperature and on the kind of surfactant was investigated. The fracture surfaces were investigated by a scanning electron microscope (SEM). It was found that the rise of temperature had a different effect on each surfactant. The crack propagation behavior of each surfactant at different temperatures was understood from the change of morphology at the crack tip.
In this work, a critical extensional stress is proposed as the criterion for the onset of gross melt fracture. This stress is estimated by means of the entrance pressure drop analyses developed by Cogswell[1] and by Binding[2]. This criterion for the onset of gross melt fracture was evaluated for several constrained geometry catalyzed (CGC) and metallocene, linear low, and high density polyethylenes. The presence of a low level of long chain branching in CGC polyethylene enhances the critical extensional stress, as compared to purely linear polyethylene. High density polyethylene blends having large low molecular weight fractions exhibit higher critical extensional stress than blends with lower amounts of low molecular weight material. Finally, a polymer having a broad molecular weight distribution shows a higher critical extensional stress than a narrow molecular weight polymer. The critical extensional stress for the onset of gross melt fracture is independent of temperature.
Jose L. Garcia, Kurt W. Koelling, James W. Summers, May 1999
New vinyl compounds with lower viscosity and increased thermal stability have been developed for injection molding. Furthermore, more advanced and robust computational techniques allow for proper design of molds and determination of process conditions. Yet, even with all the recent advancements, there still exists a need for either expertise or a trial-and-error" approach to optimize injection molding of vinyl compounds. This is due to the limited amount of detail that can be included when designing complex parts in order to reduce computational time. Research was performed in order to gain better understanding of important parameters for injection molding of vinyl compounds. The goal of the research was to increase the level of detail in the thickness direction and include a model of the degradation kinetics by reducing the complexity of the geometry being studied. The parallel plate flow geometry was evaluated in this study using a finite difference scheme to provide detailed information about viscous heating during injection. A "stop-and-go" technique was used to simulate the filling process; the degree of degradation was evaluated by implementing a computational tracer method. The simulation results were compared to experiments performed using a spiral mold."
The influence of polymer rheology on the wall thickness and flow dynamics during the filling stage of gas-assisted injection molding is examined. Isothermal experiments are conducted with tailored ideal elastic fluids to isolate the influence of polymer elasticity on the hydrodynamic coating thickness formed during the bubble penetration process. The results indicate that the wall thickness increases with increasing elasticity and extensional viscosity. The results for several tube diameters are scaled onto a single master curve using the Deborah number (De). Flow visualization and particle tracking experiments are conducted to investigate the flow field in the vicinity of the bubble front. It is concluded that the extensional rheology plays an important role in determining the wall thickness in gas-assisted injection molding.
G. Kokturk, T.F. Serhatkulu, A. Kozluca, E. Piskin, M. Cakmak, May 1999
Polylactic acid, PLA, is a relatively new biodegradable polymer primarily used for biomedical as well as mass-market packaging applications. PLLA is a polyester comprising repeating units of the lactide residue with an asymmetric carbon atom. Because of its biodegradability to nontoxic products and good plastic properties of that polymer makes it suitable for use in film studies. De Santis and Kovacs showed that the unit cell of PLLA is pseudo-orthorhombic with dimensions of a=10.7 Å, b=6.45 Å, c= 27.8 Å and ?=?=?=90°, where the molecules assume a 10/3 helical conformation. (1).Eling et al reported the existence of another modification, which they called ?-crystal modification (2) Hoogsteen et al. studied the influence of the preparation conditions on the presence of the crystal modification (3). Fischer et al investigated solution grown crystals of lactide polymers (4). Also Kalb and Pennings estimated the crystallization of PLLA from bulk state and solution (5). Tadakazu and Masuko investigated the relationship between the fine structure of PLLA and its physical properties (6). The need for polymeric biodegradable films is well established. The use of films occurs in the packaging and disposable article industries. In light of depleting landfill space and adequate disposal sites, there is a need for biodegradable films. Currently films from nylon, polypropylene, polyethylene, polystyrene, PVC, are noncompostable, which is undesirable from an enviromental point of view (7). In this paper, we present our results on the development of structure in uniaxial and biaxial stretching of PLA and subsequent heat setting process as followed by the new spectral birefringence technique we adapted for rapid acquisition of birefringence during the course of heat setting.
This paper deals with a methodology for designing an effective layout of cooling channels to make a desired temperature distribution on cavity surface in injection molding. A cooling channel is modeled as several Cooling Elements that remove heat from a cavity surface. These elements move in the mold according to the information that is ordained by Source Elements located on a cavity surface to estimate temperature distribution on cavity surface. A layout of cooling channels is autonomously decided through an interplay between Cooling Elements and Source Elements. Several numerical experiments assuming heat-transfer to be steady-heat conduction have been a good indication that this method can design an effective layout of cooling channels and can estimate the necessary number of cooling channels.
Edward Kosior, Anna Forrest, Syed Masood, Pio Iovenitti, May 1999
Polypropylene (PP) from bottle caps is present in High Density Polyethylene (HDPE) in post consumer recycled resin, and it acts to reduce the overall toughness. This study is concerned with quantifying the influence of PP on the physical properties of recycled HDPE resins and evaluating toughening recycled HDPE/PP blends by the addition of metallocene catalysed linear low density polyethylene (m-LLDPE). The toughness of HDPE was found to decrease significantly with as little as 5 wt% PP, and at 20 wt% the toughness was reduced to levels comparable to that of PP alone. The addition of m-LLDPE was effective in increasing the toughness of the blends to values comparable or greater than those of recycled HDPE alone. The principal mechanism seems to arise from the suppression of crystallinity of HDPE matrix for levels of up to 20% m-LLDPE, and the introduction of amorphous phase content within the samples.
The structural hierarchies in injection molded isotactic polypropylene are mapped at two different mold temperatures and injection speeds in order to quantitatively understand their spatial variation. The mechanisms of formation of structure in various locations of three-dimensional objects and their quantitative representations are addressed at different levels of size hierarchy (superstructure, lamellar, and unit cell) using Optical Microscopy, Hot Stage Video Microscopy, SALS, SAXS, and Microbeam WAXD. A structural model describing the overall behavior is presented.
The solvating strength of a plasticizer for poly (vinyl chloride) resin is a measure of the interactive forces between these two materials. Hansen’s three dimensional solubility parameters provide a quantitative measure of these interactive forces. Using COACTSM service, a computer program designed for solvent systems with various resins, plasticizers were found to lie near the edge of the solvency “sphere” of PVC. The relative positions of various plasticizer structures are in the expected order, while known solvents show strong association and lubricating additives fall outside the solvency sphere of PVC.
The ease with which plasticizer is combined with poly (vinyl chloride) resin is a measure of processing characteristics critical in the dryblending of suspension PVC, and the gelation of plastisols. Using commercial grade plasticizers, this study developed predictive equations for the following processing parameters of dialkyl phthalates in PVC: • Relative dryblend rates in suspension PVC as a function of plasticizer viscosity. • Relative initial gelation temperatures in plastisols as a function of plasticizer molecular weight and solvating strength. • Relative final gelation temperatures in plastisols as a function of plasticizer solvating strength. This information allows one to predict the relative processing characteristics of any dialkyl phthalate plasticizer for PVC on the basis of its chemical and physical properties.
Helmut Potente, Barbara Krell, Frank Reckert, May 1999
The manufacturing process of complex blow molded parts does not only consist of the extrusion blow molding process but is finished of by hot plate welding. Especially with plastic fuel tanks more and more parts such as nipples, holders for hoses or clips, etc. are being welded on. The strength of the weld seam does not only depend on the welding parameters but also on the quality of blow molding such as wall thickness, wall thickness distribution or warpage. These characteristics result in different deformation during the heating and the joining phase. The correlation between the blow molding process, the quality of the blow molded part and the weld strength is shown.
Harm Veenstra, Jaap van Dam, Abe Posthuma de Boer, May 1999
Blending poly(ether-ester) and SEBS thermoplastic elastomers (TPEs) with ordinary pseudoplastics, at temperatures where the TPEs are microphase separated, results in stable co-continuous morphologies over a wide composition range. Processing the same blends at temperatures where the TPEs have a single phase melt, showing normal pseudoplastic behaviour, results in a much smaller range of co-continuity. Therefore, dispersed as well as co-continuous morphologies can be obtained at given compositions. The mechanical properties of dispersed blends are compared to those of co-continuous blends and it is shown that the elastic moduli of co-continuous blends are significantly higher than the moduli of the dispersed blends. No significant difference in tensile strength or impact strength was found.
Ravi K. Sura, Prashant Desai, A.S. Abhiraman, May 1999
Stereoregular polypropylenes can be prepared using metallocene-based catalyst systems. The objective of this work is to investigate structure development during melt spinning of syndiotactic polypropylene. The fibers are well crystallized at low spinning speeds, but are only poorly crystallized at higher speeds. The helical nature of the preferred crystal form is responsible for the substantial differences in crystallization behavior of the syndiotactic PP compared to isotactic PP. Implications regarding crystallization kinetics in oriented systems with conformation-dependent crystallization are also addressed.
84 countries and 60k+ stakeholders strong, SPE
unites
plastics professionals worldwide – helping them succeed and strengthening their skills
through
networking, events, training, and knowledge sharing.
No matter where you work in the plastics industry
value
chain-whether you're a scientist, engineer, technical personnel or a senior executive-nor
what your
background is, education, gender, culture or age-we are here to serve you.
Our members needs are our passion. We work hard so
that we
can ensure that everyone has the tools necessary to meet her or his personal & professional
goals.
Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:
Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.
Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.