The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.
The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?
= Members Only |
Categories
|
Conference Proceedings
Design and Engineering of Insoluble, High Performance Starch Foams Via Extrusion Technology
Insoluble, high performance starch foams with high resistance to moisture were prepared by ZSK-30 twin screw extruder using additives such as chitosan, polyvinyl butyral (PVB) and sodium trimetaphosphate (STMP). Under the optimized extrusion conditions, water acted as a plasticizer and a blowing agent breaking up the hydrogen bonds within the starch granules and releasing the starch polymer chains without significantly reducing their molecular weight. The pressure drop at the die led to expansion and formation of closed cell foams. A screw configuration made up of 3 kneading sections was found to be the most effective for better mixing and foaming. The use of PVB was extremely effective in minimizing moisture sensitivity and made the foams hydrophobic and insoluble in water. Crosslinking of starch with STMP gave anionic mono and di-starch phosphates which formed an insoluble polyelectrolyte complex with cationic chitosan due to electrostatic attraction. This also increased the compressive strength of the foams by 3 times compared to the control foams. STMP also reduced the cell size and gave more uniform cell size distribution. It was found that properties like density, expansion ratio, compressive strength, resiliency, and cell size distribution of foams can be controlled by adjusting feed rates of starch, chitosan, and the crosslinking agent. These insoluble composite foams absorbed over 600% by weight water and formed a gel kind structure; a property which could be useful in hemostatic applications. Densities of foams were found to vary from 21 to 51 kg/m3 for different compositions studied. A maximum expansion ratio of 74.5 was obtained for the formulation containing 10% PVB and 4% chitosan.
Separation of Multi-Component Parts for Mechanical Recycling
The recyclability of plastic components has become an important objective in the product development process of packaging and technical products. In this study an approach is taken to produce hard-soft combinations with a better recyclability by using an adhesion and, at the same time, recycling layer. This additional layer is placed between the hard and the soft component. The intermediate layer shows good adhesion to both components for the use phase of the product. At end-of-life-stage of the products, the two components can be separated by melting the intermediate layer and shearing of the parts in recycling machines. Polypropylene (PP) as the hard component and thermoplastic polyurethane (TPU) as the soft component are combined with an EBA (Polyethylene-n-butylacrylate) functioning as the intermediate layer by an overmolding injection molding process. The peel strength is investigated for the combination hard component/ intermediate layer, intermediate layer/ soft component and for the combination of all three materials. The combination without the intermediate layer shows no adhesion of the two components. For simulating a separation process the peel tests are carried out at higher temperatures. The results show a lower bond strength at temperatures around 80 °C and the failure location between the TPU part and the EBA-layer. Furthermore, the results show that with the functional intermediate layer two materials can be joined for the use phase and also separated by heating at the end-of-life-stage.
Impacts of Degraded Surface Removal on Mechanically Recycled Marine Debris
This study was conducted to show the effects of inclusion of highly degraded surface material in recycled ocean plastic HDPE. Two primary materials were studied, one (HDPE-SD) contains high surface degradation while the other (HDPE-MP) had the surface removed for comparison. Each material was mechanically recycled (granulated, compounded, granulated) and then injection molded to create test specimens. Optical microscopy was performed before processing to observe and measure the surface degradation. After molding, FTIR, DSC, rheology, and mechanical characterizations were done to draw conclusions about the impacts of the degraded surface on the recycled properties. Inclusion of the degraded surface was found to increase fracture elongation, zero shear viscosity and lower the melt temperature. These findings were related to the chemical structures observed via FTIR. Additionally, comparisons and insights on the challenges and benefits of recycling ocean plastics are described.
Dimensional and Mechanical Comparison of the Conventional Injection Molding Process to Imflux's Constant Pressure Process Featuring AVA Technology
One of the major issues the plastics industry is trying to solve today is the lack of a circular economy. Plastics do not biodegrade fast enough to keep up with the waste being generated, and therefore present ecological and environmental problems. To take discarded plastics and continuously give them new life in a variety of applications is the goal of many plastics industries. However, to reprocess recycled plastics has shown many challenges. iMFLUX’s Auto-Viscosity Adjust (AVA) technology has made doing so easier with their low, constant pressure injection molding process. This technology enables the injection molding process the ability to independently adjust parameters in real time. This research focuses on comparing the dimensional and mechanical integrity of virgin ABS and PCR ABS in the conventional and iMFLUX processes. It was determined that the conventional process had better mechanical integrity with the virgin ABS than iMFLUX, and the iMFLUX process had less deviation overall between dimensions and material transition.
Injection Moldable 5G Plastic Antenna Dipole
In the past decade, the wireless communication technology has expanded rapidly over the globe, thus stipulating higher data rates and lower latency communication. The advancement in wireless technology has led to drastic increase in number of end users, demanding higher efficiency. To fulfil the requirement of data traffic, the unexplored millimeter wave frequency region is being studied which is recognized as the 5th generation of wireless communication system. This range of frequencies of millimeter waves can facilitate larger bandwidth, higher data rates, lower latency and can connect large number of devices. New technologies emerging for the foundation of 5G include massive MIMO, small cells, beamforming that plays an important role in revolutionizing the cellular network technology. Miniaturization, lightweight trends lead for utilization of thermoplastic materials being used for the antennas. The dielectric properties of thermoplastic materials are measured & used in building simulation models for antennas. A broadband dual polarized, injection moldable base station antenna with crossed dipoles, balun, feeding connectors and reflectors is designed to operate in the 5G spectrum at frequencies up to 10GHz. Sensitivity analysis is performed to examine the antenna performance and most efficient antenna design is chosen.
In situ Visualization of Microstructure of Polypropylene under Shear and CO2 Pressure
Crystallization and foaming behaviors of a semi-crystalline polymer in conditions comparable to those found in polymer processing, where the polymer melt experiences shear under elevated pressures, are key for modeling polymer processes and predicting the final structure and mechanical properties of polymer products. We investigate the crystallization behaviors of a newly developed high-melt strength polypropylene (PP) resin using a novel high-pressure visualization system. Overall crystallization kinetics can be easily controlled through the effect of induced-shear stress and the presence of pressurized CO2.
Increasing the Efficiency of the Continous Depolymerisation of Polystyrene
Unlike other thermoplastics, polystyrene can be thermally recycled into its monomer form. During the continuous depolymerization of polystyrene in the twin screw extruder, low-molecular volatile substances are gradually split off at temperatures above 400 °C. Depolymerization in a twin screw extruder offers a number of advantages for the recycling of polystyrene. The heating time in a twin screw extruder is short and high material throughputs can be achieved. The reaction products are removed directly by a vacuum system. To make the depolymerization of polystyrene more efficient and to increase process stability, the vacuum system has been optimized with regard to the vacuum dome geometry. As a result, the reaction products are removed faster and the migration of the low-viscosity melt into the vacuum dome is avoided. In addition, the constructive adaptation of the vacuum dome geometry made it possible to increase the realizable vacuum pressures during depolymerization from 400 mbar to 50 mbar and the maximum condensate yield from approx. 30 % to over 60 %. Depolymerization in a twin-screw extruder thus represents a promising process for recycling polystyrene on an industrial scale.
Cleavable Comonomers Enable Degradable, Recyclable Thermoset Plastics
Thermosets play a key role in the modern plastics industry. Their high density of chemical crosslinks result in excellent mechanical properties for high-performance applications, but also prevent them from being readily reprocessed once formed. We have recently developed degradable, recyclable versions of existing high-performance thermosets by incorporating small quantities of a cleavable co-monomer additive. This approach maintains the performance profiles of the parent materials while seamlessly integrating with existing manufacturing workflows.
3D Numerical Simulation and Experimental Observation of Bubble Growth and Collapse in Nitrogen-Gas Saturated Molten Polymer for the Core-Back Foam Injection Molding
We have demonstrated the dynamics of bubble growth and collapse in the visual observation experimental and foam injection simulator in physical foaming of molten plastics. The modified Han and Yoo model can predict the bubble size for both the situation of bubble growth and collapsed. Our modified model is promising for the application of core-back foam injection molding.
Cell Dissolution in High-Pressure Foam Injection Molding: Towards a More Efficient Packing
Packing/holding stage as one of the most important stages during foam injection molding is often overlooked in the industry. It not only influences the part’s geometrical accuracy and stability, and the residual stress distribution but also has a significant impact on the production time, machine tonnage, etc. In this work, we attempted to predict the evolution of the cell size during packing using a previously developed model. The model predicted dissolution profile was then compared with measured cell size obtained from visualized high-pressure foam injection molding. Moreover, the use of the visualization mold granted us access to characterize the dissolution time for gate nucleated cells, thereby systematically study the efficiency of each individual packing parameters (i.e. gas concentration, packing pressure, and injection speed).
Inline Cross-Linking Degree Measurement in Continuous Vulcanization of Rubber
In the production of rubber profiles, there is a risk for the processor because measured values for the actual degree of cross-linking of the extrudates are only available with a time delay due to offline measuring methods.
Therefore, the aim of this work is to develop an online method which provides the degree of crosslinking in a continuous extrusion and vulcanization process.
Therefore, this paper shows how the degree of crosslinking can be determined by measuring the surface temperature drop and the eigenfrequency of the profile.
On the one hand, the cooling rate on the surface of a heated extrudate is used to determine the core temperature. With the help of this core temperature, the degree of cross-linking in the core of a profile can be calculated. For this purpose, temperature measurements were carried out by varying the type of heating so that a homogeneous and inhomogeneous temperature distribution was present before the cooling process.
On the other hand, the eigenfrequency of differently long vulcanized test specimens was determined with a laser vibrometer and compared with the cross-linking isotherms. Since the stiffness and thus the resonance frequency of the elastomer increases with the degree of crosslinking, a correlation was found.
The investigations show a basic applicability of the presented methods for an inline measurement. Further investigations are necessary to prove the evidence of the presented correlations, so that a control loop for process optimization can be established.
Comparative Creep Evaluation of Polyacetal and Polyketone Resins
Failures occurred within threaded fasteners used in an outdoor industrial application. Specifically, cracking was observed within fasteners used to terminate a pipe conveying a gaseous chemical product. The parts had been installed leak free as verified through leak testing. However, failures occurred within some of the installations between four and five years, as identified by leakage of the gaseous project. A failure analysis identified that some of the fasteners had cracked through a mechanical short-term overload mechanism in which the stresses applied during installation exceeded the short-term strength of the material. Other parts, however, cracked through creep rupture, whereby the applied service stress exceeded the long-term strength of the material. In both cases, crack propagation and ultimate rupture was associated with the creep properties of the material. A material conversion was considered to increase the creep performance of the fasteners. This paper will review the testing performed to characterize and compare the creep performance of the incumbent and proposed materials.
Investigation of Influences on The Melting of Polyethylene and Polystyrene in a Co-Kneader
The co-kneader is well known for its superior mixing performance and its exact temperature control capabilities. Therefore, it is widely used in the polymer industry for the compounding of shear- and temperature-sensitive materials. In contrast to the considerable amount of scientific work that deals with investigation, modeling or simulation of the process behavior of single and twin screw extruders there are only few studies about the co-kneader. Due to increased quality requirements and the trend for cost reduction by process optimization, this is increasingly becoming a problem for plant construction and processing companies. To address this problem, experimental investigations of the melting behavior of polymer materials in the co-kneader were conducted. In order to determine the melting degree along the extruder length a special barrel was used which can be opened in axial direction. Based on the experimental results, a theoretical consideration for co-kneaders that are operated as plastification extruders is proposed. Therefore a disperse solid melting model is used. A comparison between simulated results and experimental data shows a descent agreement, when the point of melting initiation is estimated accurately.
Reproducibility Analysis of Fiber Length Measur ements During Processing With Twin Screw Extruders
The twin screw extruder is used for processing of plastics. One of the most important processing tasks is the preparation of plastics with fillers and reinforcing materials. For the processing of fibers various recommendations can be found. But in an industrial production, with the same specification and process parameters, the resulting fiber length may differ. These variations must be clearly defined and determined. While process deviations occur during compounding, measurement deviations can be detected in the fiber end length measurements. In order to evaluate the experimental investigations and to use it for model validations, the corresponding deviations must be known beforehand. Within this paper, a reproducibility study will be carried out to ensure the reliability of the experimental investigations. The aim of the work is to determine the fiber length degradation along the screw and their deviations. The investigations in this paper are showing that a producible fiber length reduction is possible.
Modeling the Optimal Cellular Structure in Superior Insulating Microcellular and Nanocellular Foams
This work developed a mathematical model for the correlation between the cellular structure and the thermal conductivity of closed-cell microcellular and nanocellular insulation foams. Because convection is negligible in such confined structures, the model includes the contributions from thermal radiation and conduction through the solid and the gas. The conduction term included the effects of gas volume fraction, fraction of solid located in struts and cell walls and the Knudsen effect in the gas. The radiation term was determined by analyzing absorbing-scattering-reemitting radiative heat transfer based on Mie’s scattering theory, interference of propagating waves and tunneling of evanescent waves. Validated by the measured thermal conductivities in the literature, the model was used to predict the thermal conductivity of polystyrene (PS) poly(methyl methacrylate) (PMMA) foams at various volume expansion ratios and cell sizes. It was found that the radiative contribution plays a crucial role in nanocellular foam because of the thinner and highly transparent cell walls and struts. The balance between conduction and radiation leads to the optimal expansion ratio and the optimal cell size at which the thermal conductivity was minimized.
Influence of Twin Screw Configuration and Processing on Ketoprofen Dissolution in Polymer Blends
The solubility and dissolution enhancement of the poorly soluble drug ketoprofen (KTO) in polymer blends prepared by hot melt extrusion was studied using two different twin screw configurations while changing extrusion processing parameters. Soluplus and Kollidon SR blends were used as solid dispersion excipients. A design of experiments with three melt temperatures, three screw rotation speeds, and three fill factors was performed. Different characterization techniques such as differential scanning calorimetry (DSC), optical and polarized light microscopy, X-ray diffraction (XRD), solid-state nuclear magnetic resonance (ss-NMR), and dissolution testing were used. The results from DSC and XRD showed an amorphous solid solution. An optimal processing condition by twin screw extrusion was found for each screw configuration achieving more than 80% drug release in 8 hours.
Numerical and Experimental Studies on Warpage of Flat Panel Packages
This paper presents a study on flat-panel warpage deflection using experimental and numerical methods. The study was done for various silicon-die densities and panel thicknesses. The package was produced by compression molding, and the warpage was measured after the molding. The numerical warpage analyses were performed using both linear analysis and geometrically nonlinear analysis techniques. Comparison of the experimental and simulation results show that the geometric nonlinear warpage analysis produces results which better match the experimental results.
Understanding Cure, Mechanical Properties of Carbon Black Composites and Immiscible Polymer Blends
Carbon black filled immiscible polymer blends are specialty materials used for a variety of applications. The present work utilizes statistical approach to understand the controlling parameters of crosslinking and resulting mechanical properties in ethylene vinyl acetate copolymer (EVA)/acrylonitrile-butadiene copolymer (NBR)/carbon black (CB) conductive polymer composites. The influence of varying composition on material properties was investigated. Statistical analysis was used to model the overall crosslinking behavior and mechanical properties of the composites. Crosslinking in these composites seemed largely dominated by radical concentrations only. Mechanical properties were modeled well by degree of crosslinking and CB loading for the ranges of composition tested.
Modeling Fully Intermeshing Co-Rotating Twin-Screw Extruder Kneading-Blocks: Part A Conveying Characteristics
Twin-screw extrusion modeling is in most cases based on analytical approaches that are build on considerable geometric simplifications. These approaches give only rough estimations of the processing behavior. More accurate predictions generally require numerical methods with less drastic simplifications. In this work, we analyzed the pressure-throughput behavior in fully-intermeshing double-flighted kneading blocks. First, we conducted a dimensional analysis based on the Buckingham Π-theorem. Second, for each staggering angle, we determined the characteristic angular position that describes the mean throughput. Based on this position, a parametric design study was carried out by varying the identified dimensionless parameters. To solve the complex flow patterns, 3D CFD simulations were conducted. For each design point we evaluated the dimensionless drag flow-rate and the dimensionless dam-up pressure. As an addition to the two established dimensionless conveying parameters A1 and A2, we propose a novel conveying parameter A3. This new parameter simultaneously enables the description of conveying and non-conveying kneading discs. Our results offer considerably deeper insight into the conveying characteristics of kneading blocks. In addition, they can serve as foundation for screw design and process modeling. For a better understanding of the process, we additionally investigated the power consumption and viscous dissipation in Part B of this publication.
Modeling Fully Intermeshing Co-Rotating Twin-Screw Extruder Kneading-Blocks: Part B Power Consumption
Modeling twin-screw extrusion is commonly based on significant geometric simplifications such as the representation of the flow domain as flat channels. Furthermore, the prediction of the conveying characteristics and power demand of kneading blocks is typically based on their approximation as conveying elements. Considering the accurate flow geometry of fully intermeshing co-rotating twin-screw extrusion kneading blocks we analyzed the power characteristics by means of three-dimensional numerical simulations for Newtonian flow. Therefor we first conducted a dimensional analysis to identify the dimensionless characteristic influencing parameters. Next, we derived novel dimensionless power parameters and then conducted a parametric design study. Our proposed power parameters are capable to simultaneously cover conveying and non-conveying screw elements. The results provide new insights in the power characteristics of kneading blocks and are fundamental for screw design, screw simulation, and scale-up. In Part A. [1] of this work we focused on the conveying parameters.
|
This item is only available to members
Click here to log in
If you are not currently a member,
you can click here to fill out a member
application.
We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.
Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:
Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.
Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.
If you need help with citations, visit www.citationmachine.net