SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library
Keyword/Author:
After Date: (mm/dd/yy)  
 
Sort By:   Date Added  ▼  |  Publication Date  ▼  |  Title  ▼  |  Author  ▼
= Members Only
Conference Proceedings
Comparative Study of Filled and Unfilled PLA Produced Via Injection Molding and 3D Printing
Chethan Savandaiah | Bernhard Plank | Julia Maurer | Juergen Lesslhumer | Georg Steinbichler |, April 2021
This study investigates the impact of two different processing methods, Injection molding (IM) and 3D printing (3Dp), on Neat/unfilled polylactic acid (NPLA) and the short carbon fibers (SCFs) filled polylactic acid (SPLA). Furthermore, the resulting processing conditions and its influence on mechanical properties, such as tensile, flexural, notched Charpy impact test, and heat deflection temperature (HDT) along with the process-induced effects, such as fiber length distribution and voids were studied. The process-induced voids were evident in all the computed tomography (CT) scans, 3Dp specimens have higher void volume fraction compared to no visible voids in IM specimens. Similarly, the mechanical test results such as tensile, flexural and notched Charpy impact test follow the trend for 3Dp SPLA and IM SPLA. On the contrary, 3Dp 0° and ±45° NPLA tensile test results are comparable to IM NPLA, whereas 3Dp 0° NPLA has the highest impact resistance compared to injection molded NPLA and SPLA as well as 3Dp SPLA specimens, indicating the annealing effect induced by the heated 3D printing bed along with increased void volume fraction. Furthermore, the HDT study indicates the maximum serviceable temperature of both NPLA and SPLA remained comparable regardless of the processing method. Moreover, the change in fiber length distribution for SPLA injection molded and extruded filament specimens were negligible.
Failure Analysis Case Study: The Good and the Bad PVC Cable Coatings
Sergey Shilov, April 2021
Polyvinylchloride (PVC) is the most commonly used thermoplastic resin for electrical cable coatings. PVC that hardens after polymerization is not suitable for insulating and protecting wires and cables. The necessary mechanical, thermal, and electrical levels can only be reached with the addition of softeners, stabilizers, and fillers. Composition of the good and the bad PVC samples were analyzed using FTIR spectroscopy and TG analysis.  It was found that ditridecyl phthalate was used as a softener in both samples. Magnesium oxide was used as a filler in one sample. The higher amount of water that present in the sample at room temperature and evolves during the first stage of PVC decomposition might be responsible for the low heat resistance of one sample.
Effect of Filler Content on the Electrical Conductivity of Graphite Based Composites
Muhammad Tariq | Utkarsh | Nabeel Ahmed Syed | Ashique Baten | Amir Hossein Behravesh | Ghaus Rizvi | Remon Pop-Iliev, April 2021
This research work addresses the feasibility of employing thermoplastic composites as the substitute material for bipolar plates in a fuel cell. Bipolar plates are vital components of a proton exchange membrane (PEM) fuel cell assembly. Vigorous efforts are directed by manufacturers to reduce the size, weight, and cost of the bipolar plates. The carbon-based composites are comparatively cheaper, lightweight, and can easily be used for the production of bipolar plates. However, the bipolar plate material's electrical conductivity should be sufficient to conduct the electric current from one cell to another. The main purpose of this research was to study the effects of carbon content on the electrical conductivity of the composite material. The composite materials were produced by adding graphite particles into polypropylene matrix at different contents ranging from 60wt% to 84wt%. The through-plane electrical conductivity tests were carried out. While the electrical conductivity of the composites increased by increasing the graphite content. A sudden rise in electrical conductivity was also observed between 76wt% and 80wt%.
Tensile Specimen Preparation Method Impacting Failure Behavior
Sean S. Teller | Jorgen S. Bergstrom, April 2021
Sample preparation for polymer testing is an overlooked portion of the test plan and execution. Thermoplastics and thermoset materials offer multiple methods to prepare samples: injection molding, CNC machining, waterjet cutting, die-cutting, and laser cutting are all used often. We test samples of a polycarbonate (PC) material in uniaxial tension and compare results for injection molded, machined, waterjet cut, and diecut samples. All but the diecut samples showed the same stress vs. strain response, though the waterjet samples failed at a significantly lower strain. The die-cut samples showed significant damage on the edge of the specimens, and had a lower yield stress. Careful selection of specimen preparation methods is important to a well-designed test plan.
Filterability of Raven 1300 Ultra Carbon Black For Fine Denier Fiber Applications
Jun Tian | Natalie K. Harris, April 2021
Carbon blacks can offer improved performance over dyes in fiber and textile applications in polyester, polyamide and polypropylene resins. Their stringent cleanliness and superior filterability are of critical importance for successful fine denier fiber applications. In this study, the filterability of Birla Carbon’s fiber black Raven 1300 Ultra was evaluated after compounded in PET resin via twin-screw extrusion and a Farrel continuous mixer (FCM). The carbon black demonstrates excellent filterability performance via twin-screw extrusion and an FCM compounding processes. FCM was explored to make atypical PET masterbatches with higher carbon back loadings beyond 30%. However, a further study focusing on improving dispersion and filterability of highly loaded PET masterbatches is warranted to better serve the fiber application.
Novel Flame Retardants Based on Ionic Liquids for PMMA, PC and TPU Plastics
Yanjie”Jeff” Xu, April 2021
Inovia Materials LLC is positioned to develop new generation flame retardants and flow enhancers based on ionic liquids, to replace and expand the applications of traditional additives with high “green chemistry” qualities, superior performance and enhanced properties. we have developed new flow enhancers for PC, TPU, TPAE and high-performance plastics: PAR, PPA, PPS, PSU, PEI, PEEK, etc. Our flowing enhancers have superior thermal stability (400 degree C TGA), perfect compatibility (ionic liquids being tailorable), significant increase melt flow index at very low loading level, and mild effects on the physical-mechanical properties of plastics. We welcome product application opportunities from industries.
Blending Scholarly Knowledge and Practioner Know-How To Successfully Injection Mold A Complex Part
Jeremy Dworshak, May 2020
A complex piece of sporting equipment was molded to customer satisfaction, meeting critical dimensions despite complicated tooling and the use of a crystalline resin. Combining modern simulation techniques and industry expertise proved to be a winning strategy in solving this challenge. The use of post-molding, warp controlling fixtures was completely eliminated from the legacy production process, leading to improved part performance and plant efficiency.
Comparison of Longevity of PE- and PP-based TPO Waterproofing Membranes
Yushan Hu, May 2020
This study compared the longevity performance of polypropylene (PP) and polyethylene (PE) based thermoplastic polyolefin (TPO) waterproofing membranes. It was demonstrated that PE-TPO outperformed PP-TPO for both heat aging and standard UV aging in terms of tensile property retention, weight retention and resistance of surface cracking. Better longevity for PE-TPO is attributed to the lack of tertiary carbon which is intrinsic to PP and prone to chain scission.
Direct Compounding of Long Glass Fiber-reinforced Plastics in the Injection Molding Process
Marius Wittke, May 2020
Currently, only specially treated and compacted carbon fiber recycles can be fed into the twin screw extruder. In this paper, different delivery forms of fibers are characterized in terms of the product quality. The differences between the fibers for twin screw extrusion is illustrated.
Evaluation of Mesh Interface and Immersed Boundary Models For the Optimisation of Mixing Elements
Malte Schön, May 2020
Mesh interface and immersed boundary models are presented as simplifications for the simulative design of dynamic mixing elements for single screw extruders. These simplifications have great potential to cut complexity and cost in both drafting and computation. Results for distributive mixing are compared quantitatively and qualitatively to a non-simplified 3D model. It is found that good agreement with the 3D model is achieved when the simplified models’ throughputs are adjusted for mass conservation.
Extrusion Technologies for Low Temperature Compounding
Travis Menapace, May 2020
For many applications the ability to continuously compound at low temperatures can be extremely beneficial. However, many challenges prevent traditional setups from being functional, particularly for applications requiring a high degree of mixing with extreme cooling or simultaneous temperature control. This paper addresses and experimentally validates four different technologies for compounding materials at low temperatures.
High Temperature Extensional Rheology Measurements to Understand Anti-Drip Properties
Manojkumar Chellamuthu, May 2020
We have used a novel custom-built capillary break up rheometer to understand the polymer decomposition mechanisms and effects of FR salts on the polycarbonates. The objective of the present study is to optimize the concentration of FR salts on the polycarbonate resins to improve dripping properties under flame.
Profile Extrusion Die Balancing Using Polymer Extrusion Simulation Software
Jingyang Xing, May 2020
The design of an extrusion die has been evaluated utilizing a 3-D polymer extrusion simulation software for optimal flow. The flow pattern, pressure, temperature, and shear rate are simulated in the software. The post-die extrudate shape is also simulated to show the improvement by balancing flow velocity in different sections. The combination of 3-D modeling and simulation decreases the time and difficulties for tuning the die during manufacturing.
Reverse Engineering and Failure Analysis of Materials and Polymers Using Infrared and Raman Spectroscopy
Sergey Shilov, May 2020
Failure analysis and reverse engineering can greatly expedite product development. Infrared and Raman spectroscopy is the among the most powerful tools for this application because each molecule has a unique infrared and Raman signature. Infrared and Raman microscopy was successfully used to identify foreign particles on elastomers and to depth profile multilayer polymer film. Details of the measurement techniques are discussed.
Stabilization of Polymers for a More Circular Economy
Ian Query, May 2020
Polyethylene and polypropylene are two of the most easily recycled polymers. Recycling polyolefins can result in downcycling to simple functional polymers, true recycling for reuse in the intended application, or upcycling of the polymer into higher quality products. To take advantage of the available feedstock and improve its utilization, stabilizers are can be added to allow the polymer to retain its original physical properties. A variety of customer-based case studies on recycling and upcycling will be covered showing how additives allow for improvements in the recycle stream.
Use of Gradually Changing Profile Shape in Extrudate Sizers for Simplification of Die Design
Mahesh Gupta, May 2020
Simulation of the flow and extrudate deformation in two extrusion dies with gradually changing profile shape in successive sizers is presented. The change in the profile shape in sizers is used to employ a simpler die geometry and then deform the extrudate in sizers to the required final product shape. Effect of non-uniform exit velocity, cooling shrinkage and shape of sizer profiles on extrudate deformation is included in the simulation. The predicted extrudate shape and layer structure is found to match accurately with those in a coextruded product.
Vibration Welding of Agave Fiber Biocomposites
Curtis Covelli, May 2020
In this study, the welding of several formulations of injection molded agave-fiber filled biocomposites were studied. A 240Hz vibrational welder was used and weld pressure, amplitude, and weld time were varied to determine their effects on lap shear weld strength. Strength testing was performed with a universal testing machine. The morphology of the weld zones was also analyzed to gain insight into the mechanics of the welding.
3D Chemical Foaming Simulation For Transfer Molding Process
Li-Yang Chang, May 2020
This study presents the recent development of three-dimensional prediction of cross-linked ethylene propylene diene monomer rubber (EPDM) with chemical blowing agent azodicarbonamide (ADCA) in transfer molding process. Plunger retraction is applied after transfer process is completed. The reaction kinetics model, density model, and viscosity model are applied to describe the complex foamed rubber system in the simulation study. The experimental investigation of material properties into EPDM/ADCA system are studied to make physical parameters in simulation model more realistic. The flow front behavior, the density of foamed rubber, the reaction behavior in foaming and curing conversion are examined to understand the dynamic behavior of the rubber material in both transfer and foaming stages. Furthermore, we study the effect of foaming and plunger retraction. Simulation results show that foaming effect make clamp force larger, however, plunger retraction effect make the back flow occur from cavity to pot to avoid high pressure in the cavity and therefore eliminate the mold clamp force. This study is of great relevance to light weighting application and should reduce the product-to-market cycle time by eliminating the need for the traditional trial-error method.
3D Printed Hybrid Composite Structures - Design and Optimization of A Bike Saddle
Alec Redmann, May 2020
As designers and engineers continue to push the boundaries of high performance and lightweight design, the use of complex geometries and composite materials is growing. However, traditional composite manufacturing often requires the use of additional tooling and molds which can significantly increase the cost. In this study, a carbon fiber reinforced composite bike saddle is designed and manufactured to demonstrate a newly developed hybrid composite manufacturing process. Using a 3D printed epoxy to print the final part geometry and co-cure pre-impregnated carbon fiber reinforcement, the bike saddle can be optimized, designed and manufactured in less than 24 hours.
A Review of Impact Modification Technologies for Different Thermoplastics using Ethylene Copolymers
Jeff Munro, May 2020
Thermoplastics have been blended with reactor-based and grafted-ethylene copolymers for over 50 years to improve room temperature and low temperature ductilityfor many applications, including those in the automotive, appliance, sporting goods industries. The compatibilityof the modifier with the thermoplastic matrix and the rheology of the blend components are key factors in controlling blend morphology. The amount of modifier used and the morphology obtainedaffect the balance of critical properties, including stiffness,impact toughness, and flow. Compatibility of the modifiers with the thermoplastic matrix can be controlled by composition of the modifier produced in-reactor, use of additional compatibilizers (such as diblock copolymers), and by in-situcompatibilization achieved through reactive blending. This paper reviews commercially practiced technologies for impact modification of various thermoplastics based on ethylene copolymers.


This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.




spe2018logov4.png
  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net