SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library
After Date: (mm/dd/yy)  
Sort By:   Date Added  ▼  |  Publication Date  ▼  |  Title  ▼  |  Author  ▼
= Members Only
Various topics related to sustainability in plastics, including bio-related, environmental issues, green, recycling, renewal, re-use and sustainability.
Study Of Biodegradable Polybutylene Succinate/Poly(Butylene Adipate-Co-Terephthalate) Blends
Manjusri Misra, May 2018
With increasing interest towards biobased and/or biodegradable polymers that generate high performance composites, instead of petroleum based products, creates new opportunities and research challenges. Poly (butylene succinate) (PBS) is supposed to be one of the most promising biodegradable polyesters because of its good mechanical strength and high heat deflection temperature. However, the low impact strength of poly (butylene succinate) (PBS) has limited its application in some fields. Therefore, poly (butylene adipate-co-terephthalate) (PBAT) and poly (butylene succinate) (PBS) were melt-compounded to fabricate a novel PBS/PBAT blend to improve the impact strength of PBS. The effect of PBAT on the properties of the final binary blends, including mechanical properties, thermal properties and rheology properties, is studied in this research. Rheological properties revealed a strong shear-thinning tendency of the blend resulting from the high compatibility between PBAT and PBS. The partially compatibilized PBS/PBAT blends show high tensile strength (~50 MPa), high impact strength (~200 J/m) and a moderate tensile modulus (~500 MPa). A PBS/PBAT system can be a good candidate to fabricate high impact biodegradable products.
The Effects Of Metal Stearates On The Rheological Properties Of Powder Injection Molding Feedstocks And Resulting Molded Green Parts
Michael Shone, May 2018
The effects of adding metal stearates to a powder injection molding (PIM) feedstock prepared with a wax based binder system and silicon powder was investigated. The rheological properties and molding properties of the feedstocks were characterized. Predictive viscosity models were developed for each feedstock. The zero-shear viscosity was constant with the introduction of metal stearates while, the yield stress was seen to decrease. The molded green parts were produced with a traditional injection molding process. The surface quality of the molded green parts did not seem to change. The quality through the thickness changed as vacuum voids started to form with the introduction of the metal stearates.
The Influence Of Hygrothermal Aging On The Material Properties Of Endless Fiber-Reinforced Thermoplastics
Matthias Huettner, May 2018
The ambition of developing innovative and technically high-quality products is one of the main reasons for the growing use of fiber-reinforced plastics (FRP) in industry. In particular, the opportunity to combine lightweight construction with a high degree of design freedom and functional integration leads to the preferred use of composite materials in the automotive and aerospace industries.During the operation time the composite parts are exposed to continuously changes of environmental influences which lead to aging of the polymers. This includes frequent temperature changes, dampness, saline media and mechanical loads for instance. The aging effects, caused by the interaction with the surrounding media, result in various changes of the material properties. Strength losses, embrittlement, degradation of the molecular weight or optical changes are some examples which can occur during the aging process and may induce a prematurely failure of the composite parts.In order to predict the life time of those components, the effects of the aging process and the influences on several material properties have to be known. Hence, in the following the environmental aging of a woven fabric reinforced, a short glass fiber-reinforced and an unreinforced polyamide 6 will be investigated and the influences on the material properties will be characterized.
Transamidation Of Corn Oil Side-Steam Product From Bioethanol Industry As Strategy To Develop Sustainable Polyesteramides
Manjusri Misra, May 2018
The valorization of side-steam products from bio-refinery is of crucial interest to develop further the viability of a bioeconomical system. The corn oil is one of the important co-products from the bioethanol industry with a production of more than 2.7 billion pounds in 2015 in USA. [1] In this investigation we propose to create new materials with higher added value by developing new monomers and polymers through transamidation and successive polyesterification. The resulted sustainable materials can be used as toughening agent for both thermoplastic and thermoset polymers.
Tunable Degradation Of Poly(Butylene Succinate) By Copolymerization And Catalysts
Siwen Bi, May 2018
In recent decades, poly(butylene succinate) (PBS) has been attracting attention as a promising and important polymer in the bio-based and biodegradable polymer family due to high thermal resistance and good mechanical properties. However, compared with other biodegradable polyesters (e.g., poly (lactic acid)), the high cost of PBS limits the widespread applications, especially for the packaging industry. In this paper, PBS-based copolyesters were prepared successfully by a two-stage melt synthesis, and degradability of the polyesters was investigated. It was found that the degradability of PBS could be tuned over a wide range by adjusting the degradation catalyst and lowering crystallinity by forming random copolymers. Based on our previous work on the tunable properties of PBS-based polyesters, the degradation results indicated that the enzymatic degradation mainly depends on the morphology and thermal properties, while the ratio of ester groups in polymer is the crucial factor for base-catalyzed hydrolysis.
Ulta-Low Density Foams Of Nanocrystalline Cellulose Reinforced With Polyvinyle Alcohol
Nahal Aliheidari, May 2018
Environmentally friendly thermal insulation and energy saving materials are in high demand for buildings, packaging, and other applications. Here, we report ultra-low density composite foam materials that are mainly composed of cellulose, an abundant degradable and recyclable green material. Nanocrystalline cellulose (NCC) was mixed with 0-20 wt.% polyvinyl alcohol (PVA) in an aqueous solution, followed by ice crystallization and freeze drying processes to fabricate the NCC/PVA cellular structures. Ultralight foams with densities as low as 0.026 g.cm-3 (porosities as large as 98.22%) were successfully prepared and their compression and thermal conductivity behaviors were characterized. The results revealed that the compressive stiffness and strength of NCC foams can be significantly enhanced (about an order of magnitude) by the introduction of 20 wt.% PVA as an elasticity enhancer. The thermal conductivity of NCC/PVA foams remained approximately unchanged with an increase in the PVA content and varied only between 0.037 and 0.041 W/mK, a range that is common for commercially available insulation materials. A relatively low thermal conductivity with enhanced mechanical properties of these NCC-based foams offers a potential bio-based material composition for insulation applications.
Wheat Protein As A Participant In The Sulfur-Curing Of Isoprene Rubber
Barbara DeButts, May 2018
In this study, trypsin hydrolyzed gliadin (THGd) from wheat was used as a curative and reinforcing filler in synthetic isoprene rubber (IR). Curing kinetics of the THGd compounds demonstrated that THGd was most effective when utilized as an activator in place of zinc oxide and stearic acid (ZnO/STE). The THGd vulcanizates exhibited comparable or higher moduli to the control, but lower crosslink densities and slower curing kinetics. THGd was able to facilitate crosslinking, as shown by swelling experiments, but further study is needed to match/exceed the kinetic properties of the control. Interestingly, THGd was very effective as a reinforcing filler and reinforcement increased as a function of molding time. Thus, rubber processing was favorable to the self-assembly of hydrolyzed protein into a reinforcing phase.
Calculating the Properties of Polymeric Recyclates
Achim Schmiemann, April 2018
Outline: Motivation, Introduction, Changing of Properties, Processing and Testing Equipment, Results, The Dilution Effect, Transferability of Results, Summary
The Really Big, Very Small Plastic Problem Crushing Our Oceans
Eriksen Brown, April 2018
“Technical” nutrients need to circulate in healthy loops and not escape into nature
Recycled Carbon Fibers for Automotive Applications_FINAL (rev 09.25.18).docx
Chris Surbrook, April 2018
Carbon fiber reinforced plastic (CFRP), is a very strong and light weight plastic. Similar to glass-reinforced plastic, these fibers are used to increase the strength and stiffness of the polymer into which they are incorporated. The resulting materials provide tensile and modulus values comparable to aluminum with about half the weight. Because of these mechanical properties, the materials have many applications in aerospace, automotive, bicycles, and sailboats where balancing strength and stiffness with density are important. They are also becoming increasingly common in small consumer goods as well, such as laptop computers, golf clubs, and musical instruments. The following chart shows the prediction for overall carbon fiber demand and supply through 2020. Demand will outstrip supply by the end of that period, which likely will prompt additional expansion from carbon fiber suppliers, perhaps in the 2018-2019 timeframe. Through 2024, the data also anticipate a compound annual growth rate (CAGR) in carbon fiber demand of 9.21%. Currently, the aerospace industry is the largest consumer of carbon fiber reinforced materials where the carbon fiber is most commonly used to reinforce thermoset plastics. The thermosetting resins used are primarily vinyl epoxy and polyester. The carbon fiber is typically woven or aligned and then saturated with uncured resins which generates a material referred to as pre-preg. The pre-preg materials are then catalyzed and cured into parts. Due to the rigorous demands of aerospace applications, typical work in process scrap rates for raw materials are approximately 30%. It is estimated that the aerospace industry will scrap almost 9,000 tonnes annually by 2020, and that approximately 3,400 tonnes of that scrap will be comprised of carbon fiber. An article in Composites World titled “Carbon Fiber Reclamation: Going Commercial”2, Carl Ulrich, Managing Director of Allstreams LLC (McLean, VA) explained, “Carbon fiber recycling is an attractive market niche because it's driven not just by the financials, but also by recent government incentives, and by the desire for manufacturers to have green manufacturing processes and products.” Carbon fiber recycling not only prevents the waste of virgin carbon fiber in landfills after its first use, but components produced using the recycled fiber are themselves recyclable, because carbon can retain a significant portion of its virgin properties even after a second reclamation. Further, the recycling process itself significantly reduces energy costs. Boeing estimates that carbon fiber can be recycled at approximately 70 percent of the cost to produce virgin fiber ($8/lb to $12/lb vs. $15/lb to $30/lb), using less than 5 percent of the electricity required (1.3 to 4.5 kWH/lb vs. 25 to 75 kWH/lb).
SPE Bioplastic and Renewable Technologies Division March 2018 Newsletter
SPE Bioplastic and Renewable Technologies Division, March 2018
Read the latest issue of the SPE Bioplastic and Renewable Technologies Division newsletter.
Accelerating Sustainability in Petrochemicals
Larry Gros, February 2018
Plenary: Industry Trends
Energy Recovery Using the EnergyBag™
Jill Martin, February 2018
Sustainability in Packaging
Extractives Analysis of Recycled Polyolefins for Food Contact Applications-
Autumn Rudlong, February 2018
Sustainability in Packaging
In-Situ Melt Catalysis--The Ultimate Answer to Compabilizing Addition and Condensation Polymers
Salvatore Monte, February 2018
Sustainability Metrics and Characterization
Mainstreaming Sustainable Chemistry
Dominique DeBecker, February 2018
Plenary: Industry Trends
Opportunities to Close the Loop with Non-Mechanical Recycling
Emily Tipaldo, February 2018
Sustainability Metrics and Characterization
Sustainable Flexible Packaging--A Resin Supplier's View
Lawrence Effer, February 2018
Sustainability in Packaging
Sustainable Stabilization Solutions that Accelerate Polyolefin Market Adoption
Jian-Yang Cho, February 2018
Recent Advances in Additives - Paper: As institutions implement mandates requiring CO 2 emissions reductions and light weighting, the need for sustainable plastics will grow. This presentation will discuss examples of how product development utilizing high - performance stabilizers can support the p olyolefins industry in becoming more economically and ecologically sustainable.
Sustainable Stabilization Solutions that Accelerate Polyolefin Market Adoption
Jian-Yang Cho, February 2018
Recent Advances in Additives - Presentation: As institutions implement mandates requiring CO 2 emissions reductions and light weighting, the need for sustainable plastics will grow. This presentation will discuss examples of how product development utilizing high - performance stabilizers can support the p olyolefins industry in becoming more economically and ecologically sustainable.

This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.

  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net