SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library

Sort By:  Date Added   Publication Date   Title   Author


Various topics related to sustainability in plastics, including bio-related, environmental issues, green, recycling, renewal, re-use and sustainability.
Creep-recovery behavior of novel polyurethane/carbon nanotube composites
Hamed Nazarpour-Fard , Ramin Shamsi, Reza Sheibani, October 2017

Dynamic mechanical analysis and three well-known models were used to investigate the mechanical properties of samples synthesized from recycled poly-ethylene terephthalate.

SPE Bioplastic and Renewable Technologies Division October 2017 Newsletter
SPE Bioplastic and Renewable Technologies Division, October 2017

Read the latest issue of the SPE Bioplastic and Renewable Technologies Division newsletter.

SPE Sustainability Division 4th Quarter 2017 Newsletter
SPE Sustainability Division, October 2017

Read the latest issue of the SPE Sustainability Division newsletter.

Industrial-scale preparation of nanocellulose-reinforced biocomposites
Keikhosro Karimi, Tayebeh Behzad, Pejman Heidarian , Mohini Sain, August 2017

A novel method is used to fabricate recycled polylactic acid/cellulose nanofiber composites and to improve the overall properties of the biofilms.

Polymethylolacrylamide films for antibacterial and biowaste management applications
Lidia Kolzunova, August 2017

A novel electrosynthesis method is quicker and safer than conventional approaches, and allows the practical uses of the products to be broadened.

Fabricating nature-inspired self-healing polymers
Eugenio Amendola, Antonello Pastore, Stefania Dello Iacono, Alfonso Martone, July 2017

A thermo-reversible self-healing epoxy resin based on Diels-Alder chemistry is synthesized and strength-tested as part of a fiber-reinforced composite material.

Novel bionanocomposite systems for packaging applications
Fanismita Mohanty, Niladri Sarkar, Gyanaranjan Sahoo, Sarat Kumar Swain, July 2017

Incorporating silicon carbide and calcium carbonate nanofillers into soy protein and starch, respectively, improves the thermal, mechanical, and chemical-resistance properties of the samples.

SPE Sustainability Division 3rd Quarter 2017 Newsletter
SPE Sustainability Division, July 2017

Read the latest issue of the SPE Sustainability Division newsletter.

ReFocus 2017 - Recycling Strategy Session I - Unconventionl Fillers in Plastics Applications.pdf
Chris Surbrook, June 2017

Use of unconventional filler materials as a recycling strategy for sustainable manufacturing practices is in its infancy of adoption into commercial applications. The hope is to displace conventional fillers while improving on raw materials utilization. Materials that I will discuss focus on recycled unconventional fillers and include: Sawdust, Paint Waste, Paper Powder, Crumb Rubber

A novel high-performance biobased polyamide
Tingting Yang, Yong He, Fredrick Nzioka Mutua , Yuanbo Gao, June 2017

Poly(pentamethylene oxamide) exhibits excellent mechanical, thermal, and water absorption properties, and is suitable for the fabrication of plastics, as well as parts in the automobile and electronics industries.

Improved filler-matrix interfaces in environmentally friendly polymeric composites
Alessia Quitadamo, Marco Valente, June 2017

Wood-plastic composites can be optimized with the addition of waste paper fibers, coupling agents, and bioderived polymers.

Developing greener composites from cellulose nanocrystals and biopolyurethane
Aiga Ivdre, Ugis Cabulis, Mirta Ines Aranguren, Juan Manuel Buffa, Pablo Marcelo Stefani, Veronica Mucci, June 2017

Environmentally friendly nanocomposite materials from bio-based polyurethane and cellulose nanocrystals show significantly improved mechanical properties with only 1 nanocrystal filler.

Improving the mechanical properties of fatty acid starch esters
Hero Jan Heeres, Francesco Picchioni, Asaf Sugih, Henky Muljana, May 2017

The novel use of sago starch and vinyl laurate in densified carbon dioxide increases the reactivity of esterification and produces final products that have higher degrees of substitution.

A Journey Toward Packaging Sustainability
Donna Visioli, Karlheinz Hausmann, Sarah Perreard, May 2017

Packaging sustainability has many contributing factors including: renewable materials; reduced package weight; recyclable materials; reduced food waste (for food packaging); and reduced packaging waste. These factors and interactions among them are described, along with examples of implementation.

A Model for Permeability Reduction in Polymer Nanocomposites
Sushant Agarwal, Man Chio Tang, Fares D. Alsewailem, Hyoung J. Choi, Rakesh K. Gupta, May 2017

A simple theory that builds on the tortuous path concept is developed to quantitatively predict mass transport through a polymer containing dispersed nanoplatelets, and data are presented on polylactic acid (PLA)-matrix nanocomposites. PLA is a bioderived biodegradable polymer that is being employed in food packaging where the plastic is discarded after a single use. However, the poor water vapor barrier property of PLA limits its use in this regard, and it is of interest to reduce moisture permeability through this polymer. In the present work, Cloisite 30B, an organoclay that is compatible with PLA, was dispersed in the polymer via melt-mixing, and processing conditions were optimized to reduce platelet agglomeration. Nanocomposite morphology was characterized with transmission electron microscopy, and moisture permeability was measured as a function of clay content. There was good agreement with the proposed theory, and it was found that at a 5.3 vol% filler loading the water vapor permeability was reduced by almost 70%.

A New Method to Characterize Environmental Stress Cracking Resistance (ESCR) of Polyethylene Pipes
Ben Jar, Patrick Ward, Chester Jar, Yi Zhang, Wajdy Ateerah, May 2017

A new test method has been developed to evaluate environmental stress cracking resistance (ESCR) for polyethylene (PE). The new test method applies transverse loading to the central area of a plate specimen, to generate local stretch that results in a truncated cone. Time for crack initiation in the truncated cone, during the exposure to an aggressive agent (10% Igepal CO-630 solution), is used to characterize ESCR. Results from the new test method are consistent with those from ASTM D1693, but the former does not require any pre-notch and takes less than 3% of the time required for the latter. Based on the new test method, a stand-alone device has been developed to characterize ESCR, which uses change in electrical conductivity to measure the time for the crack development. The device is compact and easy to operate. Using this device, time for crack initiation can be determined automatically and accurately without the use of a commercial test machine.

Automotive Prototype from Recycled Carbon Fiber Reinforced Recycled Polyamide Composite
Omar Faruk, Birat KC, Jimi Tjong, Mohini Sain, May 2017

Automotive industries are promoting and working to improve the sustainability of their vehicles by using materials, which includes increasing of recycled and lightweight materials. Increasing recycled materials is to improve resource efficiency by recycling consumer and industrial waste and increasing lightweight materials is to improve vehicle fuel efficiency by expanding the use of lightweight materials. An automotive prototype (oil pan) is developed from 100% recycled material (20 wt% recycled carbon fiber with 80 wt% recycled polyamide) to improve fuel efficiency by light weighting and as well as sustainability. The material properties and processing parameters are compared to current production part. A global thermal cycling durability test of prototype part has been performed where the continuous high temperature is mainly concerned. It is found that the prototype part is 15% lighter than current part and as well as lower processing time. The prototype part has successfully passed the global thermal cycling durability test.

Bio-Based Construction Adhesives
David Grewell, Kendra Allen, Eric Cochran, Chris Williams, Ty’Jamin Roark, May 2017

This papers reviews the development and characterization of a bio-based construction using glycerin from transesterification of soybean oil for the production of biodiesel. The results indicate that the bio-based adhesive has the ability to perform as well as, and in some cases better than commercially available petrochemical adhesives. The bio-based adhesive is based on renewable feedstocks, has zero VOC (Volatile Organic Compounds), and is sustainable. The bio-based adhesive was compared to commercial petrochemical adhesives in terms of lap shear strength, water stability, creep resistance, and three point bend strength. In addition, construction materials, such as oriented strand boards (OSB) were produced with the bio-based adhesive and compared to commercially available OSBs. Based on three-point bend tests and water stability, the results indicate that the bio-based OSB products performed as well as OSB products based on petrochemicals. Future tasks involve discovering and optimizing more applications for the bio adhesive such as rubber adhesion and flexibility, and pressure sensitive applications.

Food Contact and How We Got There for SPE
Tamsin Ettefagh, May 2017

• Brief introduction to Envision Plastics • Getting to an LNO • Food Grade for HDPE: EcoPrime™ • Markets served using recycled HDPE • Our Newest LNO and Patent • LCA and Conclusions

Biopolymer Compounds for Applications Requiring Marine Degradation
Mustafa Cuneyt Coskun, Stanley Dudek, May 2017

The tremendous production and consumption of plastics in various industries has led to some serious environmental concerns. The persistence of synthetic polymers in the environment poses a major threat to natural ecological systems. Therefore, some people believe that the use of biodegradable plastics is the only way to significantly reduce the environmental pollution due to plastic waste because biodegradable polymers can be environmentally friendly. Biopolymers or bioplastics are plastics which include living microorganisms in their production process. Bioplastics have the biochemical advantage of being totally or partially produced from renewable materials such as vegetable oils, sugar cane, and cornstarch, and can be biodegradable into carbon dioxide, methane, water, and inorganic compounds. Research studies have been performed to better understand the degradation of different degradable polymers in marine environments. Typically, these studies are performed on single polymers and not blends of polymers. In various applications, however, blends of different polymers are needed to fulfill the requirements of the application. This study was initiated to understand the biodegradation of biopolymer compounds made from blends of different biopolymers. Specifically, the mechanisms of the degradation and how the different mechanisms affect the use of the compounds in a marine environment were investigated. The specific application of netting for oyster bed rebuilding was the focus.

  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net