SPE-Inspiring Plastics Professionals

SPE Library


SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!
Conference Proceedings
Magazine and Collected Articles
Newsletters (SPE Chapters)
Recycling
Rheology
Podcasts
Technical Article Briefs
Webinars
Plastic Surveys
Diversity. Equity and Inclusion
SPE News
SPE YouTube Channel
Event Recordings

Use % to separate multiple keywords. 


Search SPE Library
    
    




Sort By:  Date Added   Publication Date   Title   Author

Recycling

Various topics related to sustainability in plastics, including bio-related, environmental issues, green, recycling, renewal, re-use and sustainability.
A Journey Toward Packaging Sustainability
Donna Visioli, Karlheinz Hausmann, Sarah Perreard, May 2017

Packaging sustainability has many contributing factors including: renewable materials; reduced package weight; recyclable materials; reduced food waste (for food packaging); and reduced packaging waste. These factors and interactions among them are described, along with examples of implementation.

A Model for Permeability Reduction in Polymer Nanocomposites
Sushant Agarwal, Man Chio Tang, Fares D. Alsewailem, Hyoung J. Choi, Rakesh K. Gupta, May 2017

A simple theory that builds on the tortuous path concept is developed to quantitatively predict mass transport through a polymer containing dispersed nanoplatelets, and data are presented on polylactic acid (PLA)-matrix nanocomposites. PLA is a bioderived biodegradable polymer that is being employed in food packaging where the plastic is discarded after a single use. However, the poor water vapor barrier property of PLA limits its use in this regard, and it is of interest to reduce moisture permeability through this polymer. In the present work, Cloisite 30B, an organoclay that is compatible with PLA, was dispersed in the polymer via melt-mixing, and processing conditions were optimized to reduce platelet agglomeration. Nanocomposite morphology was characterized with transmission electron microscopy, and moisture permeability was measured as a function of clay content. There was good agreement with the proposed theory, and it was found that at a 5.3 vol% filler loading the water vapor permeability was reduced by almost 70%.

A New Method to Characterize Environmental Stress Cracking Resistance (ESCR) of Polyethylene Pipes
Ben Jar, Patrick Ward, Chester Jar, Yi Zhang, Wajdy Ateerah, May 2017

A new test method has been developed to evaluate environmental stress cracking resistance (ESCR) for polyethylene (PE). The new test method applies transverse loading to the central area of a plate specimen, to generate local stretch that results in a truncated cone. Time for crack initiation in the truncated cone, during the exposure to an aggressive agent (10% Igepal CO-630 solution), is used to characterize ESCR. Results from the new test method are consistent with those from ASTM D1693, but the former does not require any pre-notch and takes less than 3% of the time required for the latter. Based on the new test method, a stand-alone device has been developed to characterize ESCR, which uses change in electrical conductivity to measure the time for the crack development. The device is compact and easy to operate. Using this device, time for crack initiation can be determined automatically and accurately without the use of a commercial test machine.

Automotive Prototype from Recycled Carbon Fiber Reinforced Recycled Polyamide Composite
Omar Faruk, Birat KC, Jimi Tjong, Mohini Sain, May 2017

Automotive industries are promoting and working to improve the sustainability of their vehicles by using materials, which includes increasing of recycled and lightweight materials. Increasing recycled materials is to improve resource efficiency by recycling consumer and industrial waste and increasing lightweight materials is to improve vehicle fuel efficiency by expanding the use of lightweight materials. An automotive prototype (oil pan) is developed from 100% recycled material (20 wt% recycled carbon fiber with 80 wt% recycled polyamide) to improve fuel efficiency by light weighting and as well as sustainability. The material properties and processing parameters are compared to current production part. A global thermal cycling durability test of prototype part has been performed where the continuous high temperature is mainly concerned. It is found that the prototype part is 15% lighter than current part and as well as lower processing time. The prototype part has successfully passed the global thermal cycling durability test.

Bio-Based Construction Adhesives
David Grewell, Kendra Allen, Eric Cochran, Chris Williams, Ty’Jamin Roark, May 2017

This papers reviews the development and characterization of a bio-based construction using glycerin from transesterification of soybean oil for the production of biodiesel. The results indicate that the bio-based adhesive has the ability to perform as well as, and in some cases better than commercially available petrochemical adhesives. The bio-based adhesive is based on renewable feedstocks, has zero VOC (Volatile Organic Compounds), and is sustainable. The bio-based adhesive was compared to commercial petrochemical adhesives in terms of lap shear strength, water stability, creep resistance, and three point bend strength. In addition, construction materials, such as oriented strand boards (OSB) were produced with the bio-based adhesive and compared to commercially available OSBs. Based on three-point bend tests and water stability, the results indicate that the bio-based OSB products performed as well as OSB products based on petrochemicals. Future tasks involve discovering and optimizing more applications for the bio adhesive such as rubber adhesion and flexibility, and pressure sensitive applications.

Food Contact and How We Got There for SPE
Tamsin Ettefagh, May 2017

• Brief introduction to Envision Plastics • Getting to an LNO • Food Grade for HDPE: EcoPrime™ • Markets served using recycled HDPE • Our Newest LNO and Patent • LCA and Conclusions

Biopolymer Compounds for Applications Requiring Marine Degradation
Mustafa Cuneyt Coskun, Stanley Dudek, May 2017

The tremendous production and consumption of plastics in various industries has led to some serious environmental concerns. The persistence of synthetic polymers in the environment poses a major threat to natural ecological systems. Therefore, some people believe that the use of biodegradable plastics is the only way to significantly reduce the environmental pollution due to plastic waste because biodegradable polymers can be environmentally friendly. Biopolymers or bioplastics are plastics which include living microorganisms in their production process. Bioplastics have the biochemical advantage of being totally or partially produced from renewable materials such as vegetable oils, sugar cane, and cornstarch, and can be biodegradable into carbon dioxide, methane, water, and inorganic compounds. Research studies have been performed to better understand the degradation of different degradable polymers in marine environments. Typically, these studies are performed on single polymers and not blends of polymers. In various applications, however, blends of different polymers are needed to fulfill the requirements of the application. This study was initiated to understand the biodegradation of biopolymer compounds made from blends of different biopolymers. Specifically, the mechanisms of the degradation and how the different mechanisms affect the use of the compounds in a marine environment were investigated. The specific application of netting for oyster bed rebuilding was the focus.

Innovation in Emerging Areas in Packaging
Narayan Ramesh, May 2017

Markets trends of cost reduction, consumer convenience, sustainability & down-gauging drive the need for new and improved packaging solutions. Development of such solutions requires a look across the entire value chain – an Asset to Market look. This talk will focus on what is required for a successful packaging solutions to be launched in a competitive space. Key examples will be presented and will cover the trends related to recyclability and downgaging.

Cellular Polymers for Oil/Water Mixtures Separation – Evaluation of Process Conditions
Pavani Cherukupally, Amy M. Bilton, Chul B. Park, May 2017

This study investigates the usage of cellular polymers for large scale oil/water separation. The model polyester polyurethane foam was characterized for sustainability and oil adsorption efficacy in a batch system. The temporal mass uptake and its efficacy were experimentally optimized at various temperatures and stirring speeds. With favorable surface, morphology, and bulk properties in conjunction with process conditions, and a mass uptake of 21 g/g of foam, this polymer lends itself as a very promising material for oil adsorption.

Degradation of PBSA in Water
Douglas Hirt, Mary Mitchell, Treyton Ryder, May 2017

The degradation of poly(butylene succinate-co-adipate) (PBSA), a biodegradable polyester that can be made from renewable feed stocks, was investigated in this work. PBSA-starch-furfural blends of up to 20 wt% corn starch and up to 15 wt% furfural were made to determine if these systems could be used to deliver a control amount of furfural, a known nematicide, for agricultural applications. The PBSA-starch-furfural blends were aged in distilled water for up to 30 days. There was only a slight downward trend in molecular weight of the PBSA and PBSA-starch blends over the 30-day aging period. Changes in the total weight of samples and the concentration of furfural in the water surrounding the pellets indicated that furfural was quickly released from the pellets and a total furfural release of 92% was achieved by day 10 of degradation.

Designing Electrical and Electronics Equipment for the Circular Economy by Using Recycled Plastics
Brian Riise, May 2017

In order to conserve resources and at the same time spur economic growth, the European Union is pushing to establish a Circular Economy. For global businesses, including manufacturers of electrical and electronics equipment (E&EE), some of the principles of the Circular Economy will likely be applied globally rather than just within the European Union. This paper describes how the recycling of plastics from shredded waste electrical and electronics equipment (WEEE) fits within the Circular Economy, and provides some guidance to manufacturers looking to incorporate these recycled plastics in new E&EE. Furthermore, we provide recommendations on the design of E&EE such that plastics may be recycled more easily in the future.

Developing a Soft Sensor Random Forest Model for the Inline Product Characterization of Polylactide (PLA) in a Twin Screw Melt Extrusion Process
Konrad Mulrennan, Marion McAfee, John Donovan, Leo Creedon, Fraser Buchanan, Mark Billham, May 2017

The melt processing of Polylactide faces challenges due to its poor thermal stability which is influenced by processing temperatures and shearing. The characterization of processed products takes place offline in laboratory environments. Typical scrap rates of a medical grade product can be up to 25-30%. This work discusses the development of soft sensor random forest models for a twin screw melt extrusion process. The resulting models can predict product end characteristics from inline data. These include mechanical properties and percentage mass change of a product during its degradation cycle. These models will act as novel inline indicators as to whether products will be in or out of specification. This will reduce manufacturing costs and minimize waste as well as accurately predicting future performance and behavior of products.

Sustainability of PVC (Vinyl) Pipe: A Comprehensive Environmental Review
Randel Dobbs, May 2017

• Thorough review of LCA data • Transparently report the findings to the water, sanitary sewer, and storm drainage industries • Support the goals and vision of the 2010 USEPA Clean Water and Safe Drinking Water Infrastructure Sustainability Policy and the 2015 USEPA National Water Program on Climate Change • Ensures the long-term sustainability of water and sewer infrastructure • Comparative review of competing pipe products

Effects of Supercritical Carbon Dioxide Processing on the Crystallization of Polyvinylidene Fluoride
Ji Eun Lee, Yanting Guo, Mirek Macecek, Siu N. Leung, May 2017

Polyvinylidene fluoride (PVDF) is an environmentally friendly, durable and low-cost alternative to traditional piezoelectric materials in sensors and actuators. PVDF is a semi-crystalline polymer with different crystal phases. Among them, the polar ß-phase is the crystalline structure that is responsible for its piezoelectric property. Conventional technology for promoting ß-phase crystals in PVDF is mechanical stretching. In this paper, processing of PVDF with supercritical carbon dioxide (ScCO2) was investigated to examine its effect on PVDF’s crystallization behavior. In the long-run, elucidation of potential strategies to tailor PVDF’s crystal structures would help to identify feasible route to tailor PVDF’s crystalline structure for emerging applications including sensing and energy harvesting. The foam morphology of PVDF was analyzed by scanning electronic microscopy while its crystallization behavior was studied by differential scanning calorimetry and Fourier transform infrared spectroscopy. Experimental results reveal that PVDF samples foamed at 120°C and 160°C under 2000 psi showed the highest crystallinity (54%) and volume expansion ratio (15.4 times), respectively. The crystallinity increase in ScCO2 processed PVDF represents a 16% increase over that of its compression-molded samples.

Environmentally Benign Processing of Poly(2,6-Dimethyl-1,4-Phenylene Oxide) (PPO) with Superheated Liquids
Md Arifur Rahman, Matthew Lok, Alan J. Lesser, May 2017

the expanding industry of polymer processing, a prominent area of current research is to process polymers efficiently without creating any environmental hazards. Processing of intractable polymers like PPO requires high processing temperature and toxic plasticizers. Very few research works have reported the use of superheated liquids to process intractable polymers. This research work presents a systematic study to explore the advantages of processing PPO with superheated liquids composed of ethanol and water. Microcellular foams of PPO having a density range from 0.13 to 0.56 g/cm3 can be produced with the aid of superheated ethanol, water and ethanol/water mixtures. Such foams also exhibit high specific strength. In addition, PPO can also be extruded with superheated ethanol or ethanol/water mixtures at a temperature which is 150 to 180 °C below the conventional extrusion temperature for PPO.

Evaluation of the Mechanical and Morphological Characteristics of PLA-Lignin, PLA-Tannin and PLA-CNF Composites
Muhammad Anwer, Hani Naguib, May 2017

PLA has now attained significant utility in the plastics and manufacturing sector. It high stiffness, strength and bio-degradability has made it an attractive option for in many applications including additive manufacturing. This paper presents the modification in properties of neat PLA with the addition of Lignin, Tannin and Carbon Nanofibers fabricated via high shear twin screw compounding. Lignin and Tannin were chosen as completely bio-based fillers and Carbon Nanofibers were chosen for their high performance and modest expense as compared with other carbon based nano-materials. Detailed morphological evaluation of the composites is also presented.

Fabrication of High Strength and Toughened Biodegradable Electrospun Fibers: Poly(Lactic Acid)/Biomax Blends
Sheikh Rasel, Remon Pop-Iliev, Ghaus Rizvi, May 2017

The objective of this study is to prepare a toughened and strengthened electrospun fibrous biodegradable poly(lactic acid) (PLA) mat blended with Biomax, an ethylene copolymer designed to modify PLA to improve toughness properties, using electrospinning. Morphological, thermal, mechanical, and thermomechanical properties of PLA/Biomax blends were investigated. Morphological findings indicated that the electrospun PLA/Biomax fibers were uniform and smooth with an average diameter of 1.4-1.5 µm when Biomax contents below 2 % (w/v). The addition of 1 % of Biomax improved both thermal stability and mechanical properties of PLA/Biomax fibrous mats. PLA/Biomax mats with 1 % (w/v) of Biomax exhibited the maximum tensile strength of 4.6 MPa and tensile modulus of 103 MPa showing 64.3 % and 101 % improvement; as compared to neat PLA values of 2.83 MPa and 51 MPa, respectively. Furthermore, the presence of 1 % Biomax into electrospun PLA fiber mats improved the storage modulus by 107.5 % compared to PLA fiber mat (41.5 MPa). Strong and toughened PLA/Biomax biodegradable fibrous mat might be potentially suitable to be used in packaging, filtration, reinforcement of composite, etc.

Fabrication of Polypropylene Bio-Composites Utilizing Camelina Press Cake
Brent Tisserat, Mark Berhow, Louis Reifschneider, May 2017

Camelina (Camelina sativa (L.) Crantz, family Brassicaceae) is an emerging oilseed crop which produces high oil content but has a press cake that contains glycosinolates which are potential health risks if employed as an animal feed. As an alternative to a dietaric use Camelina press cake (CAM) was employed as a filler material to fabricate lignocellulosic plastic composites (LPC). LPCs were generated by blending polypropylene (PP) with 25% or 40% CAM with 0% or 5% by weight of maleated PP (MAPP) via a twin screw compounding and injection molding. Injection molded test specimens had mechanical and flexural properties comparable to neat PP.

High Performance Polymers for Medical Device Applications
Suneel Bandi, May 2017

EVONIK is a technology leader for high-performance polyamides, EVONIK’s current portfolio of specialty polyamides include PA12, PEBA (flexible polyamide), bio-based polyamides, transparent polyamides, and polyphthalamide materials for the medical sector. From catheters and balloons to diagnostic equipment and surgical instrumentation, VESTAMID® Care and TROGAMID® Care are well established. EVONIK offers flexibility in the design and manufacturing through our new Bonding VESTAMID® Care and TROGAMID® Care grade polymers. EVONIK’s VESTAKEEP® Care PEEK materials are used in temporary contact and instrument applications, while VESTAKEEP® PEEK i-Grades are used for permanent implant applications. From spine and sports medicine, to drug delivery devices and heart valve applications, new compounds of VESTAKEEP® PEEK are designed to meet the specific application needs and performance demands of medical sector.

High Speed Twin Screw Extrusion for Biodegradable Polymer Blends: Analysis of Compatibility and Rheology Prediction
Bárbara A. Calderón, Margaret J. Sobkowicz, May 2017

This work examines the effects of high shear on the degradation and compatibility of blends of poly(propylene carbonate) and poly(butylene succinate) (PPC/PBS) in twin screw extrusion. Also, since solid PPC has poor flowing capabilities, different feeding methods for the TSE trials were compared for their ability to produce consistent results. The blends were compounded at 200, 500, 1000 and 2000 rpm. Viscosity measurements were used to estimate degradation, and it was found that the Maron - Pierce model for viscosity of composites accurately predicted blend viscosity at low shear. The viscosity change was inversely proportional to the screw speed, indicating matrix degradation. Moreover, the blend was more sensitive to thermomechanical degradation than the neat PBS. However, the molecular weight loss did not exceed 22% even at the highest screw speed of 2000 rpm. Finally, morphology investigation showed that the TSE blends had smaller droplet size with a broader shape distribution than the batch mixed blends. All results supported the idea that the high levels of shear stress are the governing factor in the morphology and the degradation of blends in twin screw extrusion.







spe2018logov4.png
Welcome Guest!   Login

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers, ISBN: 123-0-1234567-8-9, pp. 000-000.
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net