SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library

Sort By:  Date Added   Publication Date   Title   Author


Various topics related to sustainability in plastics, including bio-related, environmental issues, green, recycling, renewal, re-use and sustainability.
Reducing the water uptake of environmentally friendly polypropylene composites
Rafael Balart , David Garcia-Sanoguera, Maria Dolores Samper, Alfredo Carbonell, Daniel Garcia-Garcia, September 2015

Spent coffee ground particles are treated with a fatty acid derivative in a novel hydrophobic method that improves particle dispersion and impact properties.

Investigating the crystallization behavior of poly(lactic acid) materials
Wei Li, Zhong-Yong Fan, August 2015

The poly(L-lactide)-to-poly(D-lactide) block length ratio of star-shaped asymmetric stereoblock copolymers is a key control on the crystallization of stereocomplex crystallites.

Functionally graded porous membranes for effective sound absorption
Noureddine Atalla, Chul B. Park, Hani E. Naguib, Shahrzad Ghaffari Mosanenzadeh, July 2015

Tailoring the microstructure of biobased open-cell porous materials could enable the development of innovative, eco-friendly thermoplastic packages for acoustic applications.

Investigating agricultural waste-reinforced polyurethane elastomer green composites
Mehmet Dogan, Erdal Bayramli , Umit Tayfun, June 2015

Enhancing interfacial interactions between natural filler and polymer matrix by modifying the surface of rice straw results in stronger thermoplastic polyurethane-based eco-composites.

Water uptake and its effect on biocomposites
Papa-Birame Gning, Vincent Francois, Karim Bensalem, Lotfi Toubal, Jean-Christophe Cuilliere, May 2015

A non-Fickian model of moisture diffusion in a hemp/polypropylene composite allows better prediction of moisture uptake and its related effect on mechanical properties.

Natural-fiber reinforced plastics for high-temperature uses
Prakash Hadimani, Padmanabhan B. Raman, Robert Roden, Sambhu Bhadra, Babu Padmanabhan, May 2015

Jute-filled polypropylene composites with a heat deflection temperature above150°C and improved mechanical and flow properties were developed on a high-performance co-rotating twin-screw compounder.

Enhancing compatibility of poly(3-hydroxybutyrate) and starch
Trong-Ming Don, May 2015

Grafting poly(vinyl acetate) from starch improves film formability, thermal stability, and toughness in biodegradable poly(3-hydroxybutyrate)/starch blends.

3D Thickness Mapping by Micro-Computed Tomography Aiding Design
Masoud Allahkarami, Sudheer Bandla, Jay C. Hanan, May 2015

Polyethylene Terephthalate (PET) is the most used packaging material for water and carbonated soft drinks. Raw materials used in making PET are typically based on non-renewable resources and does not biodegrade at the end of their service life. Designing PET bottles to use less PET significantly reduces carbon emissions. This involves optimizing the part design and manufacture process which requires advancing accurate techniques for thickness and physical property measurements. The bottle base section is one of the locations that can often be modified in a mold. Due to the complex shape and curved surfaces, thickness measurement on the base section is difficult. Here, a micro X-ray tomography method was used for thickness measurement and visualization. Knowledge of the final thickness distribution at different locations of the bottle base is beneficial for both design and process optimization.

A New CMR-Free Polyamide Imide Resin
Limor Ben Asher, May 2015

Polyamide imide [PAI] resin polymers are well-known thermally stable polymers that are used for many high performance coating applications due to their excellent adhesion, temperature resistance, and high strength.
For the various coating uses, PAI resins are used in solvent-based formulations. However, ever-evolving regulations dictate the need to find a solution and replace the traditionally used n-methyl- and ethyl-pyrrolidone [NMP/NEP] solvents. NMP is the most-commonly used solvent in a variety of coating applications. In the 1980?s and 1990?s NMP was used to produce ?environmentally friendly? coatings, replacing cresol as the predominant solvent at that time. Now NMP and NEP have been classified as reprotoxic chemicals, based on the EU REACH regulations and, once again, PAI users face a similar threat which will close entire segments in Europe unless an alternative solvent can be found.

As a key sustainability initiative, Fujifilm Hunt has successfully developed a proprietary alternative solvent solution to the REACH-classified CMR (carcinogenic, mutagenic, reprotoxic) chemicals currently available for PAI coating applications.

Bioadhesive from Lignin and Dried Distillers? Grains with Solubles (DDGS)
Tao Wang, Manjusri Misra, Amar Mohanty, May 2015

Lignin and dried distillers? grains with solubles (DDGS) were utilized to prepare biobased adhesives at different DDGS-to-lignin ratios. The adhesion properties of the bioadhesives for bonding plywood were then evaluated. The adhesives prepared from the mixture of DDGS and lignin showed higher bonding strength than the adhesives prepared from DDGS and lignin alone. Analysis of the hot pressed adhesives showed that the DDGS extract and lignin had favorable interaction, which contributed to better performance of the hybrid adhesives.

A Study on the Relationship between the Size of the Company and It?s Sustainability Spending in the Plastics Industry
Bonnie J. Bachman, Shikhar P. Acharya, Shristy Bashyal, Margaret H. Baumann, May 2015

Business corporations? emphasis on sustainability is ever increasing which is evident by the increase in sustainability spending. Each year, companies are spending more on sustainability. This research is an attempt to understand if the sustainability spending depends upon the size of the company as measured by its revenue. Moreover, the paper focuses on the relationship between sustainability spending and size of the company in plastic industry. The study is the second survey of its kind and is based on the global inquiry with the members of the Society of Plastics Engineers (SPE). Based on the results of Chi-square test for independence, we found that there is no relationship between sustainability spending and the size of the company.

Adhesive Technology for Bonding Dissimilar Materials during the Injection Molding Process
Paul A. Wheeler, Chris Schneider, May 2015

LORD offers adhesive solutions that effectively bond plastics to substrates directly in an injection molding process. A specially designed injection mold was created to evaluate adhesive technologies and their effectiveness in bonding various thermoplastics, such as nylon, polycarbonate, PC/ABS, and TPU?s, to substrates such as aluminum and glass. This paper focuses on in-mold bonding of PC, PC/ABS, and nylon 66 to aluminum. Molded assemblies were tested for adhesion directly after molding and after environmental exposures (thermal cycling, heat and humidity, and anodizing). This process and product technology offers a number of design and cost benefits, such as light weighting, design freedoms, and manufacturing efficiencies.

Aging Behavior of Polyamide 12 during Selective Laser Melting Process ? Influence on Mechanical Properties
Katrin Wudy, Dietmar Drummer, May 2015

Selective laser melting is a well-established manufacturing technique in prototype construction. In recent years a tendency to rapid manufacturing applications and the production of ready to use components with this technology can be observed. If components made by laser melting are desired to be applied in technical series products, their achievable properties play a major role. The high process temperatures in combination with long build times during laser melting process lead to chemical and physical aging mechanisms on the polymeric feed material. The unmolten partcake material, which acts as a supporting structure, can be removed after each building process and reused for further processes. To achieve part properties which endure the necessary mechanical loads, refreshing of partcake powder with 30 up to 50 % by weight virgin material is necessary. However, constant refreshing strategies will lead to varying component properties due to an undefined aging state of the basic partcake material. Therefore, a fundamental understanding of the correlation between the feed material aging state and resulting mechanical properties is alienable.
This paper deals with the analysis of the relationship between the aging state of the feed material focused on rheological behavior, mechanical part properties and deformation behavior. Therefore, polyamide 12 powder is used for at least five processing cycles without refreshing. Before and after each build process, bulk and material characteristics like bulk density, hausner ratio, viscosity number, melt volume rate and average molecular weight were determined. Tensile tests were conducted in order to study the mechanical material and deformation behavior. Finally, mechanical behavior as a function of feed material can be evaluated. On this basis, powder life cycles in dependency of mechanical properties can be derived.

Corn Protein Composites for Agricultural Products
Jake Behrens, Jay-Lin Jane, David Grewell, James Schrader, Ines K??hnert, May 2015

Corn protein based polymer composites were developed for use in different agricultural consumer products. Addition of corn protein to polymer matrices increased thermal degradation, water absorption, and generally showed a slight decrease in mechanical properties. Thus, these composites are well suited for short-lived or controlled-degradation applications. For example, used as crop containers, the composites outperformed their petroleum-based counterparts in terms of enhancing plant growth.

Applications for Recycled Pots, Tubs and Trays
Jonathan Mitchell, Edward Kosior, Paul East, May 2015

With pots, tubs and trays being a recent addition to recyclables collections, end markets and values are yet to develop in the same way as plastic bottles. The value of pots, tubs and trays depends primarily on the level of contamination and polyolefin content (polypropylene (PP) and polyethylene (PE) plastics). An assessment was undertaken to review markets conditions affecting the recycling of polyethylene terephthalate (PET) pots, tubs and trays (PTTs). This considered the supply of clear PET, potential available markets, and alternative technologies to provide a comparative assessment of market values (e.g. EFW, landfill, export markets). The actual cost of disposal of PTTs is somewhere between œ44.9m and œ55.5m. The business case for collecting pots, tubs and trays develops further when actual values are gained per tonne, and with new sorting facilities for pots, tubs and trays being commissioned, once end markets have developed the financial benefits to local authorities in the UK will increase. This work focuses on finding markets for recycled PTTs with a number of trials at major manufactures across Europe.

Bio-Based Aliphatic Epoxy Clay Nanocomposites
Andres Rigail-Cede¤o, Daniel F. Schmidt, May 2015

The focus of the present research is the development of a new family of bio-epoxy nanocomposites for coatings and other high performance applications. A sorbitol glycidyl ether (SGE) epoxy resin has been cured with two different aliphatic polyetheramines: a poly(ethylene oxide) diamine (PEO) and a poly(propylene oxide) diamine (PPO). The degree of dispersion of commercial organo-montmorillonite clay (Cloisite 93A, C93A) was assessed optically in both the neat resin components and cured films. In general, the compatibility of the polyetheramines with the nanoclay was found to be good. While this would seem to imply enhanced dispersion, in practice it is well-known that poly(ethylene oxide), for instance, will intercalate but not exfoliate montmorillonite layers due to its inability to screen interactions between adjacent layers. Curing behavior of all samples was followed by Near-IR (NIR) spectroscopy. The extent of epoxy conversion is very high for SGE/PEO and SGE/PPO networks. The effect of the C93A in the systems is related to interactions between the curing agents and the clay modifier as well as the silicate layers themselves. When C93A was added to the systems, a slight enhancement in the rate of epoxy-amine conversion was observed prior to gelation in the SGE/PPO system as compared to the SGE/PEO system. Consistent with greater levels of dispersion in the neat resin, this may imply that the resin components have greater access to the clay modifiers, which are known to have catalytic properties in epoxy polymerizations, resulting in a greater degree of polymerization within vs. outside of the interlayer galleries. In order to quantify these effects, gelation times were studied by viscosity measurements. Consistent with the aforementioned arguments, shorter gel times were detected in the SGE/PEO compared to the SGE/PPO system. In addition to cure kinetics, mechanical properties were also studied. The SGE/PPO/C93A system displayed a larger increase in Young?s mod

Fabrication of Biocompatible Poly (butylene adipate-co-terephthalate) PBAT Coating for Biomedical Applications
Syed Hussain R. Rizvi, Alicia D?Souza, Mickey Richardson, Tre Welch, Nandika D?Souza, May 2015

The objective of the present study is to investigate the mechanical strength and thermal properties (melting, crystallization and glass transition) of petroleum based biocompatible poly (butylene adipate-co-terephthalate) (PBAT) as well as its synergistic blend with a nanofiller LDH (Layered double hydroxide). In the present study a bionanocomposite with a higher percentage of nanofillers was prepared and deformation response examined.

Biocomposites and Bioblends Based on Engineering Thermoplastics for Automotive Applications

This paper presents innovative solutions concerning the utilization of engineering polymers in bioblends and biocomposites designated for automotive applications. The studied biomaterials have lower-cost, lower-weight, and at least same performance comparing with the current engineering thermoplastics used in automotive parts. Polyamide (PA6) and acrylonitrile-butadiene-styrene (ABS) were formulated using different types and concentrations of cellulosics, polylactic acid (PLA) as a bio-sourced polymer, and in a combination of cellulosics and PLA. These biomaterials were characterized in terms of morphology, mechanical properties, and heat deflection temperature. The extruded biocomposites, foamed in injection molding process, presented similar properties as the unfoamed and reference counterparts while being around 25-30% greener, lighter and less expensive.

Biodegradable Latex Paper Coatings Based on Polyhydroxyalkanoates for Improved Moisture Resistance
Christopher Thellen, Michael Andrews, Allen Padwa, Zhiguan Yang, May 2015

Polyhydroxyalkanoate (PHA)-based latex paper coatings were investigated for improved water resistance in Kraft paper samples. Cobb testing of samples with paper coating weights ranging from 10-30g/mý indicated improved moisture resistance with coating thickness as well as improved performance through heat treatment of the samples. Microscopy investigations indicated the formation of localized concentrations of surfactant after exposure to water. The PHA-surfactant structure and the effect of the annealing process on moisture resistance were investigated.

Improving the Physical Properties and Versatility of PLA with PHA Copolymer Blends
Michael Andrews, Allen Padwa, Zhiguan Yang, May 2015

Blends of 100% biobased, fully biodegradable amorphous polyhydroxyalkanoate (a-PHA) copolymers and polylactic acid (PLA) exhibit good toughness and clarity in injection molding, extruded sheet and blown film. It will be shown that the level of toughness increase and modulus reduction can be tuned by blend composition. Results will also be presented that show that the addition of only 5% a-PHA significantly modifies the behavior of PLA in cutting and trimming typical of thermoforming operations.

SPE-Inspiring Plastics Professionals

© 2024 SPE-Inspiring Plastics Professionals.
All rights reserved.

84 countries and 60k+ stakeholders strong, SPE unites plastics professionals worldwide – helping them succeed and strengthening their skills through networking, events, training, and knowledge sharing.

No matter where you work in the plastics industry value chain-whether you're a scientist, engineer, technical personnel or a senior executive-nor what your background is, education, gender, culture or age-we are here to serve you.

Our members needs are our passion. We work hard so that we can ensure that everyone has the tools necessary to meet her or his personal & professional goals.

Contact Us | Sitemap | Data Privacy & Terms of Use



SPE US Office
83 Wooster Heights Road, Suite 125
Danbury, CT 06810
P +1 203.740.5400

SPE Australia/New Zealand
More Information

SPE Europe
Serskampsteenweg 135A
9230 Wetteren, Belgium
P +32 498 85 07 32

SPE India
More Information

SPE Middle East
More Information

3Dnatives Europe
157 Boulevard Macdonald
75017, Paris, France
More Information

Powered By SPE

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals

SPE ImplementAM

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals

  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net