SPE-Inspiring Plastics Professionals

SPE Library


SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!
Conference Proceedings
Magazine and Collected Articles
Newsletters (SPE Chapters)
Recycling
Rheology
Podcasts
Technical Article Briefs
Webinars
Plastic Surveys
Diversity. Equity and Inclusion
SPE News
SPE YouTube Channel
Event Recordings

Use % to separate multiple keywords. 


Search SPE Library
    
    




Sort By:  Date Added   Publication Date   Title   Author

Recycling

Various topics related to sustainability in plastics, including bio-related, environmental issues, green, recycling, renewal, re-use and sustainability.
Applications for Recycled Pots, Tubs and Trays
Jonathan Mitchell, Edward Kosior, Paul East, May 2015

With pots, tubs and trays being a recent addition to recyclables collections, end markets and values are yet to develop in the same way as plastic bottles. The value of pots, tubs and trays depends primarily on the level of contamination and polyolefin content (polypropylene (PP) and polyethylene (PE) plastics). An assessment was undertaken to review markets conditions affecting the recycling of polyethylene terephthalate (PET) pots, tubs and trays (PTTs). This considered the supply of clear PET, potential available markets, and alternative technologies to provide a comparative assessment of market values (e.g. EFW, landfill, export markets). The actual cost of disposal of PTTs is somewhere between œ44.9m and œ55.5m. The business case for collecting pots, tubs and trays develops further when actual values are gained per tonne, and with new sorting facilities for pots, tubs and trays being commissioned, once end markets have developed the financial benefits to local authorities in the UK will increase. This work focuses on finding markets for recycled PTTs with a number of trials at major manufactures across Europe.

Bio-Based Aliphatic Epoxy Clay Nanocomposites
Andres Rigail-Cede¤o, Daniel F. Schmidt, May 2015

The focus of the present research is the development of a new family of bio-epoxy nanocomposites for coatings and other high performance applications. A sorbitol glycidyl ether (SGE) epoxy resin has been cured with two different aliphatic polyetheramines: a poly(ethylene oxide) diamine (PEO) and a poly(propylene oxide) diamine (PPO). The degree of dispersion of commercial organo-montmorillonite clay (Cloisite 93A, C93A) was assessed optically in both the neat resin components and cured films. In general, the compatibility of the polyetheramines with the nanoclay was found to be good. While this would seem to imply enhanced dispersion, in practice it is well-known that poly(ethylene oxide), for instance, will intercalate but not exfoliate montmorillonite layers due to its inability to screen interactions between adjacent layers. Curing behavior of all samples was followed by Near-IR (NIR) spectroscopy. The extent of epoxy conversion is very high for SGE/PEO and SGE/PPO networks. The effect of the C93A in the systems is related to interactions between the curing agents and the clay modifier as well as the silicate layers themselves. When C93A was added to the systems, a slight enhancement in the rate of epoxy-amine conversion was observed prior to gelation in the SGE/PPO system as compared to the SGE/PEO system. Consistent with greater levels of dispersion in the neat resin, this may imply that the resin components have greater access to the clay modifiers, which are known to have catalytic properties in epoxy polymerizations, resulting in a greater degree of polymerization within vs. outside of the interlayer galleries. In order to quantify these effects, gelation times were studied by viscosity measurements. Consistent with the aforementioned arguments, shorter gel times were detected in the SGE/PEO compared to the SGE/PPO system. In addition to cure kinetics, mechanical properties were also studied. The SGE/PPO/C93A system displayed a larger increase in Young?s mod

Fabrication of Biocompatible Poly (butylene adipate-co-terephthalate) PBAT Coating for Biomedical Applications
Syed Hussain R. Rizvi, Alicia D?Souza, Mickey Richardson, Tre Welch, Nandika D?Souza, May 2015

The objective of the present study is to investigate the mechanical strength and thermal properties (melting, crystallization and glass transition) of petroleum based biocompatible poly (butylene adipate-co-terephthalate) (PBAT) as well as its synergistic blend with a nanofiller LDH (Layered double hydroxide). In the present study a bionanocomposite with a higher percentage of nanofillers was prepared and deformation response examined.

Biocomposites and Bioblends Based on Engineering Thermoplastics for Automotive Applications
MIHAELA MIHAI, May 2015

This paper presents innovative solutions concerning the utilization of engineering polymers in bioblends and biocomposites designated for automotive applications. The studied biomaterials have lower-cost, lower-weight, and at least same performance comparing with the current engineering thermoplastics used in automotive parts. Polyamide (PA6) and acrylonitrile-butadiene-styrene (ABS) were formulated using different types and concentrations of cellulosics, polylactic acid (PLA) as a bio-sourced polymer, and in a combination of cellulosics and PLA. These biomaterials were characterized in terms of morphology, mechanical properties, and heat deflection temperature. The extruded biocomposites, foamed in injection molding process, presented similar properties as the unfoamed and reference counterparts while being around 25-30% greener, lighter and less expensive.

Biodegradable Latex Paper Coatings Based on Polyhydroxyalkanoates for Improved Moisture Resistance
Christopher Thellen, Michael Andrews, Allen Padwa, Zhiguan Yang, May 2015

Polyhydroxyalkanoate (PHA)-based latex paper coatings were investigated for improved water resistance in Kraft paper samples. Cobb testing of samples with paper coating weights ranging from 10-30g/mý indicated improved moisture resistance with coating thickness as well as improved performance through heat treatment of the samples. Microscopy investigations indicated the formation of localized concentrations of surfactant after exposure to water. The PHA-surfactant structure and the effect of the annealing process on moisture resistance were investigated.

Improving the Physical Properties and Versatility of PLA with PHA Copolymer Blends
Michael Andrews, Allen Padwa, Zhiguan Yang, May 2015

Blends of 100% biobased, fully biodegradable amorphous polyhydroxyalkanoate (a-PHA) copolymers and polylactic acid (PLA) exhibit good toughness and clarity in injection molding, extruded sheet and blown film. It will be shown that the level of toughness increase and modulus reduction can be tuned by blend composition. Results will also be presented that show that the addition of only 5% a-PHA significantly modifies the behavior of PLA in cutting and trimming typical of thermoforming operations.

Bioplastics for Solar Thermal Applications: Potential of Bio-Poly(Ethylene) and Poly(Trimethylene Terephthalate) for Swimming Pool Solar Collectors
Andrea Klein, Katharina Resch, Gernot Oreski, May 2015

Within this study bioplastics ? bio-poly(ethylene) and poly(trimethylene terephthalate) ? i.e. polymers based on renewable resources, are comprehensively evaluated and tested as to their principle applicability as absorber mate?rial in swimming pool solar collectors. Investigations showed that the considered bioplastics possess a high potential for application in solar thermal devices in general. However, further optimization, especially of long-term performance and maximum operating temper?ature by tailoring molecular and super-molecular structure as well as by addition of additives and fillers is required.

Catalytic Technology and Controlled Chemical Release for Post-Harvest Preservation of Fruits and Vegetables
Vinod Malshe, Rajen Raje, Leena Raje, Rupali Hande, May 2015

Roughly 1/3rd (1.3 billion tonnes) of the food produced in the world for human consumption gets wasted every year. Fruits and vegetables have highest wastage rates of almost 40-50%. This is partly due to ethylene action and improper storage and handling. Ethylene, a catalyst generated by climacteric fresh produce is responsible for their ripening. Ripened fruits have more risk of microbial spoilage due to increased sugar %. Improper handling, storage, lack of cold chain etc in post-harvest conditions further increases the loss. In the past, we have reported ?niche? technologies for fruit preservation, such as chemical agents responsible for adsorption and destruction of ethylene. In continuation, now we are introducing some more ?unique? technologies such as using a) Catalytic converters (of ethylene to ethylene oxide), b) Ethylene adsorbers and c) Halogen releasers. We believe that these simple and cost-effective techniques will be the trendsetters to reduce horticultural wastage considerably and in the end benefit the farmer, the retailer and also the consumer. Efficacy of these products was tested by using them as novel additives in flexible packaging, punnets etc. which are commercially used for storage and transport of various fruits and vegetables in which they were effective in reducing ethylene from the storage area. We also experimented use of these products by incorporating them in a plastic film and all through we could acquire considerable shelf life extension of both climacteric and non-climacteric fruits and vegetables. We firmly believe by using such value-added packaging post harvest horticultural losses will be considerably reduced and it can result in a service to mankind.

Cellulose Acetate as a Tunable Bio-Based Engineered Material
Naresh Budhavaram, Bing Lu, Christopher D. McGrady, Michael Combs, Karthik Vaideeswaran, May 2015

Cellulose acetate (CA) is one of the oldest plastics, with an application history dating back over 100 years. Recent drivers towards an engineered bio-based material that can be used in demanding applications have caused revitalization in CA product development. This paper illustrates the ability to fine-tuning mechanical and thermal properties through plasticizer selection. A case study is also presented where CA can be used to enhance the bio-content of the petro-based plastics such as polypropylene (PP) while improving performance of the final blend.

Novel Poly (Lactic Acid) Foams: Micro to Sub-Micron Size Transition
Praphulla Tiwary, Pedro Luiz Ferreira, Manoj Nerkar, Marianna Kontopoulou, Chul. B. Park, May 2015

Chemical modification of poly(lactic acid) (PLA) through a reactive extrusion process was performed in the presence of a free-radical initiator and multi-functional chain extenders. Batch foaming, using nitrogen as the blowing agent, was done at various temperatures to differentiate the effect of chain branching and nucleation on the cell size of reactively modified foams. Depending on the conditions very fine, sub-micron size foams were obtained in reactively modified PLA.

Conversion of Lignin: Sustainable and Cost-Effective Carbon Fibers Usable within the Automotive Industry
Hendrik Mainka, Enrico K”rner, Axel S. Herrmann, May 2015

Lightweight design is an essential part of the automotive strategy for reducing the CO2 emission. The use of carbon fiber reinforced polymers (CFRP) offers an enormous lightweight potential in comparison to aluminum, enabling a weight reduction, if a load-adapted (unidirectional) CFRP-design is used, of up to 60% in automobile parts without a degradation of the functionalities. Today, the use of CFRP is limited in mass series applications of the automotive industry by the cost of the conventional carbon fiber precursor Poly-Acrylic-Nitrile (PAN). Fifty percent of the cost of a conventional carbon fiber already belongs to the cost of the PAN precursor.
The analysis of lignin as an alternative precursor shows clearly a significant reduction in the cost of CFRP and reduction of CO2 emission during carbon fiber production. This fact is essential to make carbon fibers ready for a mainstream use within the automotive industry.
For qualifying Lignin as a precursor for automotive carbon fiber a detailed chemical understanding of the material is necessary. Lignin, which was used for carbon fiber production, is analyzed with the help of nuclear magnetic resonance spectroscopy and infrared spectroscopy in this paper, and the major chemical reactions during conversion process are highlighted.

Plastics Recovered from Shredded Waste Electrical and Electronic Equipment
Brian L. Riise, Ron Rau, May 2015

Our industry leading separation technology enables us to recover styrenic and polyolefin plastics from complex mixed streams such as shredded waste electrical end electronic equipment. Plastic flakes recovered using our process are compounded and sold as pellets suitable for use in injection molding applications. This paper looks at the challenges and benefits of recovering plastics and modifying their properties for use in various applications such as home appliances, office products and electronics.

Crystal Morphology of Biodegradable Poly(Lactic Acid)/Graphene Oxide Nanocomposites and the Isothermal Crystallization Kinetics Research
Lihong Geng, Hao-yang Mi, An Huang, Peng Yu, Xiang-fang Peng, May 2015

The biodegradable poly(lactic acid) (PLA)/graphene oxide (GO) nanocomposites were prepared successfully at various GO loading by solution casting. Wide angle X-ray diffraction (WAXD) showed the layered GO were exfoliated in the nanocomposites and well distributed. Evident crystallization peaks were observed in the PLA/GO nanocomsites rather than neat PLA in the nonisothermal melt crystallization test, which indicated the GO was an effective nucleating agent. For isothermal melt crystallization, the overall isothermal melt crystallization rates were signi?cantly greater in the nanocomposites than in neat PLA. The crystallization rates decreased with increasing crystallization tempera?ture. The incorporation of GO did not affect the crystal morphology of PLA in the nanocomposites, but it contributed to more regular and perfect crystallization structure.

Qualifying a Recycled Material with Stringent Engineering Properties Requirements Using Six Sigma
Vikram Bhargava, May 2015

Recycling commodity plastics with non-stringent mechanical requirements present few technical changes other than justifying the cost of recycling. When considering recycled engineering plastics for high end products with very tough mechanical, cosmetic (including custom color), processing, cost and reliable availability requirements with minimal lot to lot variation, it becomes a much bigger challenge. This paper deals with a successful case study in overcoming these challenges.

Development of Eggshell Powder Masterbatch for Food Trays
Yoshihisa Sumita, Hiroyuki Hamada, Hiroyuki Inoya, Koichi Wada, Mariko Fujii, May 2015

In Japan, eggs are widely used in many food products on the market, and 200,000 tons of eggshells are annually discharged and most of them get discarded.
Re-use of discarded eggshells into food trays is one of the efficient ways to realize a recycling-oriented society.
Many food trays consist of polypropylene or polystyrene, and sometimes recycled products. Thus, it is possible to use biomass materials such as eggshells as a bulking agent. Eggshells need to be compounded into resin when used in food trays, but the egg?s unique sulfur smell is emitted when applying heat in the manufacturing process.
In order to solve this odor problem, we compounded under different conditions with polypropylene and eggshell to research ways to reduce odor.
The results suggested that molding temperatures exert significant influence on odor generation.
By molding at the lowest temperature that enables resin to mold, a possible countermeasure for odor reduction is created.

Development of Green Polymer Blends Made from Carbon Dioxide Based Polyol and Poly (Lactic Acid)
Qirui Sun, Manjusri Misra, Amar Mohanty, May 2015

Poly(lactic acid) (PLA) and Poly(propylene carbonate) (PPC) polyol were melt-compounded to fabricate a novel polymer blend with balanced mechanical properties (tensile strength and ductility). Blend with 90wt.% PLA/10wt.% PPC polyol and 70wt.% PLA/30wt.% PPC polyol were prepared and evaluated in terms of mechanical performance. As for the blend with 30wt.% PPC polyol, two residence time have been applied (1min and 2min). It was found that 10wt.% loading of PPC polyol has an adverse effect on both tensile strength and elongation at break of the blend. Overall mechanical performance deteriorated with only 10wt.% PPC polyol. Major finding was that with incorporating 30wt.% PPC polyol in the polymer blend system, the ductility (elongation at break) of the blend significantly improved by 5000%. However, the tensile strength decreased drastically. The morphology of the blend was investigated through scanning electron microscopy (SEM).

Sustainability and Corporate Best Practices: Second Triennial Survey of Plastics Industry
Margaret H. Baumann, Bonnie J. Bachman, Shristy Bashyal, May 2015

The 2014 Sustainability Survey was the second survey that SPE Marketing and Management Special Interest Group conducted on sustainability in the plastics industry. The first survey was conducted in 2011. The purpose of this paper is to present the results of the 2014 survey, and establish some baseline case studies of best sustainability practices in the industry.

Durability Studies of Biodegradable Polymers under Accelerated Weathering Conditions
Rajendran Muthuraj, Manjusri Misra, Amar Mohanty, May 2015

Poly (butylene adipate-co-terephthalate), (PBAT) and poly (butylene succinate), (PBS) are promising biodegradable polyesters whose blends have gained great attention in wide range of applications. However, there are some drawbacks to the use of these biodegradable polymer blends in durable applications. The main disadvantage of these materials is hydrolytic degradation at elevated temperature and humidity. In this study, we have assessed the durability of PBAT, PBS and PBS/PBAT blends at 50 oC with 90% relative humidity (RH) for duration of up to 18 days. The mechanical properties of these polyesters were evaluated before and after 18 days of conditioning at 50 oC with 90% RH. The mechanical properties of the polyesters were affected with increasing conditioning time. This can be attributed to the susceptibility of ester bonds to hydrolytic degradation at elevated temperature and humidity. The hydrolytic degradation was further confirmed by scanning electron microscopy

Effect of Added Plasticizer on Moisture Diffusion through Polylactic Acid/Clay Nanocomposites
Man Chio Tang, Sushant Agarwal, Fares Alsewailem, Rakesh Gupta, May 2015

Polylactic acid (PLA), a bio-derived, biodegradable polymer, is being used as a substitute for conventional, non-biodegradable polymers in packaging applications. However, it has poor barrier properties for gases and water vapor, and these can be improved by dispersing nanoclay platelets in the polymer. In this work, the effects of adding nanoclay and a plasticizer, namely acetyl tributyl citrate (ATBC), on the water vapor permeability of PLA films have been evaluated; a variety of mixing methods were employed. It was found that while nanoclay addition can help in lowering the permeability through both the plasticized and unplasticized PLA, the effect was less than anticipated in the presence of the plasticizer. However, if the nanoclay dispersion was assisted by ultrasonication, the results in the two cases were comparable. In addition, it was found that the method of mixing during nanocomposite preparation also had significant effect on the permeability properties of the plasticized samples.

Effect of Brightness, Color and Transparency on Scratch and Mar Visibility in Polymers
Marquen Hamdi, Hung-Jue Sue, Drew Manica, May 2015

Scratch and mar damages can critically impact the aesthetics of polymeric surfaces. Improving scratch and mar visibility resistance of polymers is of big interest for academic and especially industrial arenas. In this paper, we investigate the influence of surface brightness, color and transparency on scratch and mar visibility resistance in polymers. A new psychophysical test based on Multidimensional Scaling (MDS) statistical method was utilized to determine mar visibility resistance onset. It has been found that scratch visibility resistance decreases with greener, lower brightness and higher transparency samples. Preliminary results show that MDS is a powerful tool to disseminate the psychophysical evaluation of mar damage. This research paves the way for a standardized methodology to reliably quantify scratch and mar visibility resistance in polymers.







spe2018logov4.png
Welcome Guest!   Login

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers, ISBN: 123-0-1234567-8-9, pp. 000-000.
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net