SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library
Keyword/Author:
After Date: (mm/dd/yy)  
 
Sort By:   Date Added  ▲  |  Publication Date  ▲  |  Title  ▲  |  Author  ▲
= Members Only
Sustainability
Various topics related to sustainability in plastics, including bio-related, environmental issues, green, recycling, renewal, re-use and sustainability.
Development & Thermo-Physical Properties of Bio-Based Polymer / Clay Nanocomposites
Mahmoodul Haq, September 2007
Bio-based resin systems obtained as blends of functionalized vegetable oils and petroleum based resins have been found to increase toughness of petroleum based resins and improve their environmental friendliness. Nevertheless this improvement in toughness generally compromises the stiffness of the resin system. Nano-scale layered silicate (nano-clay) polymer nanocomposites exhibit enhanced mechanical and physical properties at relatively low weight fractions of inclusions. The reported study shows that proper stiffness – toughness balance along with enhancement in many other physical properties can be obtained by incorporating nano-scale layered silicates in bio-blended polymers. Polymer nanocomposites with varying clay contents and varying bio-blend (epoxidized soya bean oil) in unsaturated polyester resins were manufactured. Tensile properties and moisture absorption properties were studied. Fracture surface morphologies and characterization of nanocomposites were performed using electron microscopy. The resulting bio-blended polymer nanocomposites exhibit promising results for use in structural applications.
Effect of Additives on the Structure and Properties of Wheat Straw-Polypropylene Composites
Leonardo Simon, September 2007
Natural fibers from agricultural activities have been emerged as alternative fillers in the thermoplastic industry. Crops such as wheat straw are renewable and low cost materials that combined with thermoplastics such as polypropylene provide engineering products with unique characteristics. Due to the wide range of thermoplastics and potential agricultural fillers the influence of additives in the systems is one of the points yet to be determined for different combinations of matrix and filler. In this study composites containing 30 wt-% of wheat straw (WS) fibers and polypropylene (PP) were prepared in a batch mixer. The individual effects of two coupling agents and a lubricant in the composites were investigated. Scanning electron microscopy (SEM) was used to examine the morphology of wheat straw particles and composites. The water absorption behavior and mechanical properties were assessed for those composites prepared. Results showed a strong interaction between filler and matrix in compositions containing coupling agent; differences were observed in the performance of the two coupling agents tested. Furthermore the lubricant used contributed to the water absorption of the composites.
Renewable Bio-Composites for Automotive Applications
Angela Harris, September 2007
PowerPoint Presentation at ACCE 2007.
Evaluating Extrusion Compression Molding for Imparting Better Surface Finish in Long Fiber Thermoplastics Using In-Mold Film Technology
Pritam Das, September 2007
Automotive applications of compression molded products with a thermoplastic matrix have been growing rapidly within the last few years as demonstrated by increased use in applications including front-ends bumper beams dashboards and under body shields. Long fiber thermoplastics (LFTs) have received much attention due to their processability by conventional technologies. However applications of LFT materials have been limited in external body parts that require a good surface finish. Painting LFT parts is rare and requires considerable equipment investment. Further painting is often associated with environmental concerns such as Volatile Organic Compounds (VOCs) and high energy consumption. This paper innovates the process of extrusion compression molding for long fiber thermoplastic parts by placing a film (with a thermoplastic olefin backing) in-mold that melt bonds to the LFT material. This results in a compression molded LFT part that has the nice surface finish required for exterior applications. In order to evaluate the process variables potentially contributing to the surface quality are identified and analyzed. A Design of Experiments is carried out to investigate thoroughly yet economically the effect of four process variables. Gloss chip resistance and adhesion of film to substrate are tested according to ASTM standards. These test results are used to evaluate the effect of the processing variables considered and to establish optimum operating parameters.
Hybrid Bio-Based Composites from Nano-Reinforced Bio-Petro Polymer Blends & Natural Fibers
Rigoberto Burgueño, September 2007
Natural fiber composites or biocomposites have recently gained much attention due to their low cost environmental friendliness and their potential to compete with glass-fiber composites. However the use of all-natural resins is limited due to performance concern and hence the blending bio-resins in petroleum resins has gained importance due to their improved toughness and environmental friendliness. Nevertheless addition of bio-resins generally compromises stiffness barrier and thermal properties. The enhancement of polymer stiffness and barrier properties with small concentrations of layered silicates is well established. With this context the paper presents the development and thermo-physical characterization of a hybrid composite material with increased environmental friendliness that can retain stiffness without sacrificing toughness barrier and thermal properties. Hybrid biocomposites were made from bio-based resins (blends of unsaturated polyester and epoxidized soya bean oil) reinforced with organo-nanoclays and natural fibers (unprocessed industrial hemp). Results show that an optimum material design that maximizes the synergy of the constituents is possible and provide an initial benchmark in identifying such balance.
Investigation of Sheet Molding Compound Fabricated from Soy-Based & Petroleum-Based Resins
Libby Berger, September 2007
Plaques fabricated from sheet molding compound (SMC) with soy-based resins in both glass fiber-reinforced and carbon fiber-reinforced versions are compared with the equivalent SMC with petroleum-based resins. Since soy-based resins are less sensitive to the price of petroleum than petroleum-based resins these materials represent potential cost savings to the automotive industry if the price of petroleum continues to increase as well as providing opportunities to decrease overall carbon dioxide emissions. Soy beans are also a renewable resource. Material thermal properties including dynamic mechanical analysis (DMA) and coefficient of linear thermal expansion (CLTE) are evaluated as are mechanical properties including tensile and compressive characterizations. The effect of humidity aging was evaluated by moisture absorption as well as residual tensile and compressive properties. For as-received properties the glass-reinforced version of the soy-based material is found to be similar in performance to the petroleum-based material. However the carbon-reinforced soy resin material has lower mechanical properties than the petroleum-based SMC probably due to a lack of fiber-matrix adhesion. In humidity aging the petroleum based materials absorbed less moisture than the soy-based although the relative property loss caused by humidity aging was similar for the petroleum-based and the soy-based materials.
Nano-Fibrillated High-Modulus Ductile (HMD) Technology in Environmentally Sustainable Xenoy iQ* Resins
Vikram Gopal, September 2007
Recently General Electric Plastics launched a series of High Modulus Ductile (HMD) products as an expansion to the Xenoy product line. In these HMD products a highly fibrillated nano network is combined with state of the art mineral filler technology allowing for retention of impact and tensile properties whilst increasing the modulus of molded articles. We have been successfully able to incorporate this technology in the Xenoy* (PC/PBT and PC/PET) resin which has resulted in superior chemical resistance low CTE excellent tensile strength fatigue and low temperature ductility. We will present a case study where HMD technology was combined with our environmentally sustainable low carbon footprint Xenoy iQ* resin offering excellent part performance lighter weight and increased first pass yield during processing.
Recent Developments in UV Stable SMC Technology
Rob Seats, September 2007
The desire for weatherable sheet molding compound for use in a wide range of applications is growing due to the potential of eliminating paint or coatings on the molded article. The elimination of paint or protective coatings can result in significant cost savings and an improved environmental profile for the article. These savings can be realized if existing coating facilities are at capacity or if a green field investment is being considered. Weatherable sheet molding compound (SMC) technology has been previously available but has been designed for specific applications. Transfer of this technology into other application areas has resulted in some performance issues. This paper discusses new developments in weatherable sheet molding compound technology that allow its use in a wider range of application areas.
A PLASTICS EDUCATION OUTREACH PROGRAM FOR MIDDLE SCHOOL AGED GIRLS
Elizabeth Dell, May 2008
This paper describes a plastics education program for middle school girls. The goals of the program were to expose the girls to science and engineering and to educate them about plastics. The program included an overview of plastics and hands-on experimental investigations. Experiments included making a polymer environmental issues and the structure and properties of polymers. In addition to giving detailed descriptions of the program this paper includes recommendations for further improvements of the program.
ADVANCED RESULTS OF A PROSPECTIVE STUDY ON FLEXIBLE PLASTIC PACKAGING IN ANDEAN COUNTRIES: SCENARIOS AND STRATEGIES FOR THE PERIOD 2003 ƒ?? 2013
María del Pilar Noriega , Juan Diego Sierra, May 2008
A prospective study on flexible plastic packaging was carried out in Andean Countries with the participation of two plastic research institutes and 20 companies including raw material manufacturers processors converters and end users.The inputs of this prospective study were a review of the state of the art on flexible packaging a benchmarking study considering the 10 most important companies a study using the Delphi method with national and international experts who identified the key variables to the development and progress of the flexible packaging in the region and workshops.This study generated new projects and products on the field of barrier smart and active packaging biodegradable materials among others; it shows that the Andean region is applying R&D and technological alliances in its industrial processes.
BENEFITS OF AN ENERGY USAGE INDICATOR FOR INJECTION MOLDING SIMULATION
Paul Brincat , Russell Speight, May 2008
With growing concern regarding our environmental impact greater focus has been placed on ways we can reduce our impact by improving our decisions designs and processes. The use of injection molding simulation has been shown to reduce material consumption reduce production scrap assist in recycling existing materials create better quality products that have a prolonged life and reduce energy consumption required during the manufacturing process. This paper will present the benefits of an additional measure called an Energy Usage Indicator that can assist part designers using injection molding simulation to easily identify the processing requirements of a polymer material.
BENEFITS OF AN ENERGY USAGE INDICATOR FOR INJECTION MOLDING SIMULATION
Paul Brincat , Russell Speight, May 2008
With growing concern regarding our environmental impact, greater focus has been placed on ways we can reduce our impact by improving our decisions, designs and processes. The use of injection molding simulation has been shown to reduce material consumption, reduce production scrap, assist in recycling existing materials, create better quality products that have a prolonged life and reduce energy consumption required during the manufacturing process. This paper will present the benefits of an additional measure, called an Energy Usage Indicator, that can assist part designers using injection molding simulation to easily identify the processing requirements of a polymer material.
EFFECT OF ENVIRONMENTAL STRESS CRACKING AGENTS ON FATIGUE AND CREEP OF A MDPE PIPE
R. Ayyer , A. Hiltner , E. Baer, May 2008
The effect of concentration of Igepal CO 630 on slow crack propagation in MDPE pipe was investigated. The kinetics and mechanism of crack propagation in fatigue at R=0.1 and creep at 50 ?øC were compared to those in air. The fatigue and creep behavior followed the same stepwise crack growth mechanism as in air at all the concentrations used. As the concentration increased to 0.01 vol. % the creep lifetime decreased significantly whereas the lifetime in fatigue gradually increased. At higher concentrations the lifetime was similar in creep and fatigue.
FAILURE ANALYSIS OF A PLASTIC SLIDE VALVE ASSEMBLY
Ahamed Shabeer, May 2008
Premature cracks were observed during service in the slide valve assembly molded from an acrylonitilebutadiene- styrene resin. The investigation focused on the determination of nature and cause of the failure. The results obtained during the evaluation indicated that the failure was due to environmental stress cracking which occurred as a consequence of the presence of the residual stress and the stress cracking agent. This paper will focus on the testing used to characterize the failure mode and identify the cause of the cracking of the slide valve assembly.
FAILURE ANALYSIS OF A PLASTIC SLIDE VALVE ASSEMBLY
Ahamed Shabeer, May 2008
Premature cracks were observed during service in the slide valve assembly molded from an acrylonitilebutadiene- styrene resin. The investigation focused on the determination of nature and cause of the failure. The results obtained during the evaluation indicated that the failure was due to environmental stress cracking, which occurred as a consequence of the presence of the residual stress and the stress cracking agent. This paper will focus on the testing used to characterize the failure mode and identify the cause of the cracking of the slide valve assembly.
CHARACTERISATION OF BIOACTIVE POLYCAPROLACTONE
P. Douglas , G. Walker , D. Jones, May 2008
The effects of a bioactive [Nalidixic Acid - NA] and copolymers [Poly L-Lactic Acid (PLLA) and Polyethylene Glycol (PEG)] on the drug release morphology and mechanical properties of Poly -caprolactone [PCL] were studied. Release of NA increased with the addition of copolymers in the PCL with a maximum release of 55% in a blend containing 5%w/w each of PLLA PEG and NA. The filler effect of the NA was illustrated by an increase in viscosity in the blends. FTIR spectrums showed the blending of the PCL and the NA. The carbonyl bond present in the biodegradable polymers PCL and PEG allowed for some degree of miscibility also confirmed by the decrease in thermal conductivity from 0.26 to 0.2 Wm'C. Mechanical properties were decreased by the copolymers with the Young's Modulus decreasing by 15%.
CHARACTERIZATION OF BIODEGRADABLE ACRYLIC ACID GRAFTED POLY(?-CAPROLACTONE)/CHITOSAN BLENDS
Yeh Wang , Jiang-F. Yang, May 2008
Blend films of acrylic acid grafted polycaprolactone (PCLgAA) and chitosan (CS) with different compositions were prepared from aqueous acetic acid solution. DSC measurements showed that the melting temperatures and enthalpies of the blends decreased with increasing CS content. From FTIR results it can be seen that the amino groups of CS form covalent bonds with the carboxylic groups of PCLgAA in addition to hydrogen bonds between these components in the blends. Though the crystal structure of the PCLgAA component was not changed as proved by WAXD results blending CS suppressed the crystallinity of the blends. Furthermore the ductility of CS was increased during tensile testing in PCLgAA/CS blends due to enhanced affinity between the two components. However PCLgAA/CS blends showed greater resistance than PCL/CS blends to biodegradation in an enzymatic environment.
CHARACTERIZATION OF BIODEGRADABLE ACRYLIC ACID GRAFTED POLY(?-CAPROLACTONE)/CHITOSAN BLENDS
Yeh Wang , Jiang-F. Yang, May 2008
Blend films of acrylic acid grafted polycaprolactone (PCLgAA) and chitosan (CS) with different compositions were prepared from aqueous acetic acid solution. DSC measurements showed that the melting temperatures and enthalpies of the blends decreased with increasing CS content. From FTIR results it can be seen that the amino groups of CS form covalent bonds with the carboxylic groups of PCLgAA in addition to hydrogen bonds between these components in the blends. Though the crystal structure of the PCLgAA component was not changed, as proved by WAXD results, blending CS suppressed the crystallinity of the blends. Furthermore, the ductility of CS was increased during tensile testing in PCLgAA/CS blends due to enhanced affinity between the two components. However, PCLgAA/CS blends showed greater resistance than PCL/CS blends to biodegradation in an enzymatic environment.
DEVELOPMENT OF ANTIMICROBIAL PLA NANOCOMPOSITES WITH SILVER CONTAINING LAYERED NANOCLAYS FOR PACKAGING AND COATING APPLICATIONS
M.A. Busolo , M.J. Ocio , J. M. Lagaron, May 2008
This paper presents the development and characterization of the antimicrobial activity of a novel family of commercial food contact compliant silver-modified nanolayered clays and of their nanobiocomposites with polylactic acid. The antimicrobial nanolayered clays showed an antimicrobial effectiveness of 99.99% against Gram-negative Salmonella spp. In addition the PLA-clay nanocomposite also showed a significant antimicrobial activity and a synergistic water vapour permeability reduction of 32% with respect to neat PLA. The results indicate that these novel active nanolayered fillers can potentially exhibit numerous applications in plastic and bioplastic packaging and coatings where simultaneous barrier and antimicrobial performance are desirable.
DEVELOPMENT OF ANTIMICROBIAL PLA NANOCOMPOSITES WITH SILVER CONTAINING LAYERED NANOCLAYS FOR PACKAGING AND COATING APPLICATIONS
M.A. Busolo , M.J. Ocio , J. M. Lagaron, May 2008
This paper presents the development and characterization of the antimicrobial activity of a novel family of commercial food contact compliant silver-modified nanolayered clays and of their nanobiocomposites with polylactic acid. The antimicrobial nanolayered clays showed an antimicrobial effectiveness of 99.99% against Gram-negative Salmonella spp. In addition, the PLA-clay nanocomposite also showed a significant antimicrobial activity and a synergistic water vapour permeability reduction of 32% with respect to neat PLA. The results indicate that these novel active nanolayered fillers can potentially exhibit numerous applications in plastic and bioplastic packaging and coatings where simultaneous barrier and antimicrobial performance are desirable.


This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.




spe2018logov4.png

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net