SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library
After Date: (mm/dd/yy)  
Sort By:   Date Added  ▲  |  Publication Date  ▲  |  Title  ▲  |  Author  ▲
= Members Only
Various topics related to sustainability in plastics, including bio-related, environmental issues, green, recycling, renewal, re-use and sustainability.
Development & Thermo-Physical Properties of Bio-Based Polymer / Clay Nanocomposites
Mahmoodul Haq, September 2007
Bio-based resin systems obtained as blends of functionalized vegetable oils and petroleum based resins have been found to increase toughness of petroleum based resins and improve their environmental friendliness. Nevertheless this improvement in toughness generally compromises the stiffness of the resin system. Nano-scale layered silicate (nano-clay) polymer nanocomposites exhibit enhanced mechanical and physical properties at relatively low weight fractions of inclusions. The reported study shows that proper stiffness – toughness balance along with enhancement in many other physical properties can be obtained by incorporating nano-scale layered silicates in bio-blended polymers. Polymer nanocomposites with varying clay contents and varying bio-blend (epoxidized soya bean oil) in unsaturated polyester resins were manufactured. Tensile properties and moisture absorption properties were studied. Fracture surface morphologies and characterization of nanocomposites were performed using electron microscopy. The resulting bio-blended polymer nanocomposites exhibit promising results for use in structural applications.
Effect of Additives on the Structure and Properties of Wheat Straw-Polypropylene Composites
Leonardo Simon, September 2007
Natural fibers from agricultural activities have been emerged as alternative fillers in the thermoplastic industry. Crops such as wheat straw are renewable and low cost materials that combined with thermoplastics such as polypropylene provide engineering products with unique characteristics. Due to the wide range of thermoplastics and potential agricultural fillers the influence of additives in the systems is one of the points yet to be determined for different combinations of matrix and filler. In this study composites containing 30 wt-% of wheat straw (WS) fibers and polypropylene (PP) were prepared in a batch mixer. The individual effects of two coupling agents and a lubricant in the composites were investigated. Scanning electron microscopy (SEM) was used to examine the morphology of wheat straw particles and composites. The water absorption behavior and mechanical properties were assessed for those composites prepared. Results showed a strong interaction between filler and matrix in compositions containing coupling agent; differences were observed in the performance of the two coupling agents tested. Furthermore the lubricant used contributed to the water absorption of the composites.
Renewable Bio-Composites for Automotive Applications
Angela Harris, September 2007
PowerPoint Presentation at ACCE 2007.
Evaluating Extrusion Compression Molding for Imparting Better Surface Finish in Long Fiber Thermoplastics Using In-Mold Film Technology
Pritam Das, September 2007
Automotive applications of compression molded products with a thermoplastic matrix have been growing rapidly within the last few years as demonstrated by increased use in applications including front-ends bumper beams dashboards and under body shields. Long fiber thermoplastics (LFTs) have received much attention due to their processability by conventional technologies. However applications of LFT materials have been limited in external body parts that require a good surface finish. Painting LFT parts is rare and requires considerable equipment investment. Further painting is often associated with environmental concerns such as Volatile Organic Compounds (VOCs) and high energy consumption. This paper innovates the process of extrusion compression molding for long fiber thermoplastic parts by placing a film (with a thermoplastic olefin backing) in-mold that melt bonds to the LFT material. This results in a compression molded LFT part that has the nice surface finish required for exterior applications. In order to evaluate the process variables potentially contributing to the surface quality are identified and analyzed. A Design of Experiments is carried out to investigate thoroughly yet economically the effect of four process variables. Gloss chip resistance and adhesion of film to substrate are tested according to ASTM standards. These test results are used to evaluate the effect of the processing variables considered and to establish optimum operating parameters.
Hybrid Bio-Based Composites from Nano-Reinforced Bio-Petro Polymer Blends & Natural Fibers
Rigoberto Burgueño, September 2007
Natural fiber composites or biocomposites have recently gained much attention due to their low cost environmental friendliness and their potential to compete with glass-fiber composites. However the use of all-natural resins is limited due to performance concern and hence the blending bio-resins in petroleum resins has gained importance due to their improved toughness and environmental friendliness. Nevertheless addition of bio-resins generally compromises stiffness barrier and thermal properties. The enhancement of polymer stiffness and barrier properties with small concentrations of layered silicates is well established. With this context the paper presents the development and thermo-physical characterization of a hybrid composite material with increased environmental friendliness that can retain stiffness without sacrificing toughness barrier and thermal properties. Hybrid biocomposites were made from bio-based resins (blends of unsaturated polyester and epoxidized soya bean oil) reinforced with organo-nanoclays and natural fibers (unprocessed industrial hemp). Results show that an optimum material design that maximizes the synergy of the constituents is possible and provide an initial benchmark in identifying such balance.
Investigation of Sheet Molding Compound Fabricated from Soy-Based & Petroleum-Based Resins
Libby Berger, September 2007
Plaques fabricated from sheet molding compound (SMC) with soy-based resins in both glass fiber-reinforced and carbon fiber-reinforced versions are compared with the equivalent SMC with petroleum-based resins. Since soy-based resins are less sensitive to the price of petroleum than petroleum-based resins these materials represent potential cost savings to the automotive industry if the price of petroleum continues to increase as well as providing opportunities to decrease overall carbon dioxide emissions. Soy beans are also a renewable resource. Material thermal properties including dynamic mechanical analysis (DMA) and coefficient of linear thermal expansion (CLTE) are evaluated as are mechanical properties including tensile and compressive characterizations. The effect of humidity aging was evaluated by moisture absorption as well as residual tensile and compressive properties. For as-received properties the glass-reinforced version of the soy-based material is found to be similar in performance to the petroleum-based material. However the carbon-reinforced soy resin material has lower mechanical properties than the petroleum-based SMC probably due to a lack of fiber-matrix adhesion. In humidity aging the petroleum based materials absorbed less moisture than the soy-based although the relative property loss caused by humidity aging was similar for the petroleum-based and the soy-based materials.
Nano-Fibrillated High-Modulus Ductile (HMD) Technology in Environmentally Sustainable Xenoy iQ* Resins
Vikram Gopal, September 2007
Recently General Electric Plastics launched a series of High Modulus Ductile (HMD) products as an expansion to the Xenoy product line. In these HMD products a highly fibrillated nano network is combined with state of the art mineral filler technology allowing for retention of impact and tensile properties whilst increasing the modulus of molded articles. We have been successfully able to incorporate this technology in the Xenoy* (PC/PBT and PC/PET) resin which has resulted in superior chemical resistance low CTE excellent tensile strength fatigue and low temperature ductility. We will present a case study where HMD technology was combined with our environmentally sustainable low carbon footprint Xenoy iQ* resin offering excellent part performance lighter weight and increased first pass yield during processing.
Recent Developments in UV Stable SMC Technology
Rob Seats, September 2007
The desire for weatherable sheet molding compound for use in a wide range of applications is growing due to the potential of eliminating paint or coatings on the molded article. The elimination of paint or protective coatings can result in significant cost savings and an improved environmental profile for the article. These savings can be realized if existing coating facilities are at capacity or if a green field investment is being considered. Weatherable sheet molding compound (SMC) technology has been previously available but has been designed for specific applications. Transfer of this technology into other application areas has resulted in some performance issues. This paper discusses new developments in weatherable sheet molding compound technology that allow its use in a wider range of application areas.
NatureWorks® Polylactide Biopolymer: A Sustainable Polymer for the 21st Century
Richard C. Bopp, March 2008
What is Impact of PLA Biopolymer on Corn Supply and Uses? Based on 2001 Harvest of 9.8 billion bushels (NCGA Data): Export 20%; Alcohol 1%; Other 2%; HFCS 6%; Sweeteners 2%; Starch 3%; Ethanol 7%; PLA 0.6%; Feed 59%
Polymeric Chain Extenders and Biopolymers
Roelof van der Meer, BASF Nederland, Volker Frenz, BASF AG, Germany, Marco Villalobos, Abiodun Awojulu, BASF Corporation, Wyandotte, MI, March 2008
Engineering polymers based on condensation thermoplastics like PET, PBT, Polyamides, Polycarbonates and Biopolyesters have to be reprocessed during recycling at very high temperature, where degradation of these polymers are extremely rapid. As the result of this regradation, the possiblities for reprocessing internal process regrind as well as postconsumer - recycle reclaims back into demanding application is very limited. The polymeric chain extender offer a possibility to rebuild molecular weight and melt strengths of these polyester, blends and related product and open a new window of opportunity for recycling.
Recycling of packaging products including biodegradable plastic materials such as PLA foam, plastic fibers and non-woven materials
Alberto E. Ramírez, March 2008
PALLMANN develops and manufactures size reduction machines and complete systems for the plastics and recycling industries. We have over 100 years in the industry, one of the largest R&D facilities, and a firm commitment to the sustainability movement. PALLMANN continues to offer innovative solutions to the industry, including Size Reduction technology and Agglomeration of Thermoplastics with our Plast- Agglomerator. Our innovating technology is presently applied in such processes as reclamation of carpet waste, packaging products including biodegradable plastic materials such as PLA foam, plastic fibers and non-woven materials, films, etc.
Can I Run PLA on My Existing Extruders? A Practical Application Guide
Edward L. Steward, March 2008
PLA (Polylactide resin) is one of the bio-plastics that has found some product applications and seems to be an extrudable material of growing interest. Any polymer that is made from a renewable resource and that it is a degradable and/or environmentally friendly material seems to gain favor in some markets, especially if it can be processed on existing machinery. This paper will discuss the requirements to efficiently extrude PLA on a single screw extruder with an optimum screw design and processing conditions. Different sizes of extruders will be looked at to give some guidelines as to the required equipment to successfully extrude this material.
Degradation of Biodegradable, UV-degradable and Oxodegradable Plastics with In-vessel Food Waste Composting Environment
Joseph Greene, Ph.D., Department of Mechanical Engineering Mechatronic Engineering, Joseph Greene, Ph.D., Department of Mechanical Engineering Mechatronic Engineering, and Manufacturing Technology, California State University and Fengyu Wang, NWS Jepson Prairie Organics Inc., March 2008
Biodegradable and oxodegradable plastics degraded in an in-vessel compost operation along with food waste from San Francisco, California. Biodegradable plastics included, corn starch based biobag, Mirel PHA bag, BioTuf Ecoflex bag, Husky corn starch based trash bag, PLA lids, sugar cane lids, and Kraft paper. Also buried were polyethylene shrink-wrap, UV degradable plastic bag, and oxodegradable plastic bag. The samples were placed in perforated plastic sacks and mixed with food waste at NorCal and Jepson Prairie Organics (JPO) composting operation in Vacaville, California. After 180 days, the materials that completely degraded included PLA lids, Mirel bags, Ecoflex bags, Husky bags, and corn starch trash bags. Small fragments of sugar cane lids and Kraft paper were visible. The sugar cane and Kraft paper fragments were very moist and would disintegrate when picked up. The Kraft paper and sugar cane fragments did not completely biodegrade due to the lack of mechanical agitation while in the plastic sacks. If the materials were placed in the compost soil, higher degradation would occur due to better interaction with the compost soil. The oxo-biodegradable plastic bags, LDPE plastic bags and UV-degradable plastic bag did not experience any degradation and did not fragment into smaller pieces.
Development and Implementation of Soy-Based Foam in Automotive Applications
Cynthia M. Flanigan, Christine Perry, Deborah F. Mielewski, Ford Research and Advanced Engineering Laboratory, Ford Motor Company, Systems Division, Lear Corporation, March 2008
Using agricultural crops as material feedstock is becoming more prevalent as scientists search for alternative choices to petroleum based products. Soybeans are one crop within North America that is economical and readily available for use in plastic applications. Recently, we have been evaluating the use of soy as reinforcement and resin in a variety of polymer matrices, including flexible and rigid polyurethanes. Our main focus has been on using functionalized soybean oil in the manufacture and formulation development of flexible, polyurethane foams for seating applications. Soy-based foams reduce the environmental footprint compared with the manufacture of petroleum-based foams. These materials utilize a sustainable material, decrease our dependency on petroleum and reduce carbon dioxide emissions. Ford Motor Company has researched methods to overcome several technical issues such as reducing odor in the foam and maximizing soy content in foam formulations, while meeting rigorous, automotive interior applications. In a partnership between Ford Motor Company and Lear Corporation, we have demonstrated the feasibility of formulating and processing soy-based polyurethane systems that have the key properties required for automotive interior and seating foam applications. Prior to launch of this soy technology, numerous processing trials were completed on headrest, armrest and seating applications. We will review the main steps required in moving the technology from a laboratory research setting to production environment and launch of the soy technology in 2008 Mustang. We will also discuss the technical and commercial challenges and benefits of implementing soy-based foam.
Recycling of Long Glass Fiber Reinforced, Padded Instrument Panels
Robert Egbers, Sr., March 2008
The punched sections of composite substrate/foam/skin (punch outs) have traditionally gone to landfill, typically at a cost of $0.05/lb. to the Tier 1 supplier. Wipag Recycling in Germany has developed a process whereby the substrate material is recovered from the composite structure, separating the resin from the foam and skin. The resin has 99.8% purity and can be subsequently blended back into virgin resin for production at a specified percentage without statistically varying the physical properties of the LFPP IP substrate. The WIPAG laminate separation process has been in commercial operation at American Commodities Inc. (ACI) in Flint, MI for the past 7 years albeit with SMA, PC/ABS and TPO substrates. With regard to recycling LFPP, traditional wisdom dictates that the material properties of the resin will be reduced after each heat history due to glass fiber length attrition, caused from the processing of the material. This study shows that up to 30% of resin reclaimed from the composite substrate can be added to virgin material with a minimal effect on the properties of the final part.
Automotive Interior Material Recycling and Design Optimization for Sustainability and End of Life Requirements
Steven R. Sopher, March 2008
Advances in the field of polyolefin resins in the area of PP copolymers, PE homopolymers, and PP & PE blends have allowed for the creation of new and improved polyolefin bead foams. These polyolefin bead foams are capable of improved performance due to the advancements that have been made in the area of polyolefin resin catalyst systems and additives. The benefits of polyolefin bead foams allow for lower densities to be used where higher density extruded foams are currently being utilized. There is a move in the automotive industry to promote the use of sustainable products. Sustainability considerations in automotive design must include a variety of factors. These include: • Weight reduction • Commonization of materials • Use of more environmentally friendly materials • Ease of disassembly at vehicle’s End-Of-Life • Consideration of RoHS requirements • Compliance to OEM, Federal and Industry regulations • Recyclability of materials and current recycling stream • Component design and performance requirements • Vehicle and occupant safety While evaluating all of these considerations when designing for sustainability, it is necessary to understand the allowances for performance and cost trade-offs as they relate to meeting the needs of both the OEM and end user (or customer). This paper will explore the industry trends, particularly those published by the OEM’s as they relate to designing for sustainability and recyclability. This paper will compare some of the newer industry recycling guidelines, as well as vehicle End-Of-Life dismantling requirements. This paper will also explain the intention of the newer vehicle component part guidelines for sustainable development as they relate to automotive component design and ease of disassembly and recyclability. Case studies will be presented to evaluate component part design and the move toward the use of more commonly recycled and recyclable products. Industry trends will also be reviewed as they apply to market demand for more environmentally friendly materials. The pros and cons of using some of the new biobased materials will also be compared and contrasted.
Sustainable Automotive Component Manufacturing Solutions
Gordon C. Miller, March 2008
Being sustainable means that a product or service meets both today’s needs and results in minimized burden to our children and their children and to the environment for the future. This paper will present a proven alternative to environmental issues such as heavy metals used chrome plating for application to plastic components in the global automotive, light truck, and heavy truck industry. It will highlight how this technology, Fluorex® bright film, further contributes to a “greener” environment by eliminating environmental hazards and residual footprints from substances such as heavy metals by using film based solutions contributing to the development of lighter and potentially “greener” light weight vehicles. This translates in both better fuel economy in vehicles using this technology and reductions in emissions from the manufacturing processes. Other environmental benefits for other coating opportunities using Flourex® Paintfilm will be evaluated based on this technology that specifically involve more opportunities to minimize the environmental impact and improve recyclability while contributing to a more aesthetically pleasing environment by enhancing the appearance of vehicles worldwide. This is a solution for manufacturers to provide the appealing and marketable look of chrome or other pleasing surface characteristics on plastic components while being environmental compliant and responsible. This is a sustainable solution for coloring and coating – Fluorex® bright film and Fluorex® paintfilm – a “green” alternative to painting metal and plastic products that enhances the environmental benefits of plastics is both possible and here today.
Trends & Challenges for Start-Up & Emerging Companies in the Clean-Technology Marketplace
Eric Koester, March 2008
The years 2006 and 2007 saw popular culture embrace issues such as global warming, alternative energy production, biofuels, hybrid transportation, and carbon credits. Clean Technology became the fastest growing investment sector and produced some of the most-watched initial public offerings of the recent past. While this new 'fame' has led to an increase in new companies and initiatives, investment dollars, state and federal legislation, and media coverage, it has also led to concerns that the marketplace is a bubble without strong fundamentals to drive the marketplace. Certain investment funds have set up new funds designed to purchase failed and distressed cleantechnology companies. What is the current status of the clean-technology marketplace? What fundamentals exist for the companies that are succeeding and those that fail? Where are the investment dollars and how can companies take advantage of the current marketplace? While some may question aspects of the clean technology revolution, it is without question that a fundamental shift in our consciousness and our culture are occurring -- that has led to unique opportunities and challenges for tomorrow's leaders in clean-technology markets.
Using Recycled Polyethylene: Avoiding the Pitfalls
Frits van der Klooster & Chris Ernst, March 2008
Advanced Blending Technologies has developed a software program that creates low cost optimized blends from wide-/off-spec and/or recycled Polyethylene streams of material, by providing blend formulations based on up to seven selectable material properties. The resulting blends are prioritized by least cost and eliminate the need for costly “Trial and Error” experimenting with blends. Combined with rapid testing of incoming material streams, the OptiMISER® system has successfully been used to convert 100% virgin material processors to 100% recycled usage, at substantial bottom line savings. The OptiMISER system provides the materials engineering needed to maintain production efficiency and insure product quality. Using recycled or wide-/off-spec PE usually results in decreased manufacturing efficiencies, increased scrap and worse; decreased end product quality. This paper discusses a systematic approach which allows the use of up to 100% recycled and/or wide-/off-spec materials while maintaining or even increasing manufacturing efficiencies, reducing process scrap, insuring a consistent end quality product, and significantly reducing overall finished product costs.
The Litterability of Plastic Bags: Key Design Criteria
K.Verghese, RMIT University Centre for Design , M.Jollands & M.Allan , RMIT University School of Civil, Environmental and Chemical Engineering, March 2008
Single use plastic bags are used by the billion in supermarkets, fast food outlets and retail stores because of their excellent fitness for use, resource efficiency and cheap price. They come in many varied shapes, sizes and materials. Because of their light-weight nature they are only a tiny fraction of the tonnage of plastic used in the packaging industry, yet they make a major contribution to litter, thanks to their large surface area and lack of biodegradability. In 2006 the Australian Government Department of Environment and Heritage initiated and funded, courtesy of the Natural Heritage Trust, a study to investigate the effect of bag design on litterability. This paper draws on report materials from the study that are the intellectual property of the Commonwealth. The paper presents a review of previous studies on plastic bags, a review of international plastic bag regulations, as well as the results of an assessment of the environmental impact of bag design using a streamlined life cycle assessment and the litterability of bag design using equipment including wind tunnels. The paper concludes with recommendations for bag design to maintain resource efficiency while reducing litterability.

This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.

  Welcome Page

How to Reference Articles from the SPE Library:

Brief version (acceptable):
Author(s), SPE-ANTEC Tech. Papers, vol. no., page no. (year).
Proper version (preferred):
Author(s), “Title,” SPE-ANTEC Meeting in location: month, year, vol. no., page no.