SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library
Keyword/Author:
After Date: (mm/dd/yy)  
 
Sort By:   Date Added  ▲  |  Publication Date  ▲  |  Title  ▲  |  Author  ▲
= Members Only
Sustainability
Various topics related to sustainability in plastics, including bio-related, environmental issues, green, recycling, renewal, re-use and sustainability.
Opportunities and Development of Bio-Based Materials for SMC (Sheet Molding Compound)
Dwight Rust, September 2008
Current and future changes in the automotive industry present an increased opportunity for thermosets. Bio-based materials in SMC present an opportunity to help automotive manufacturers in the US to meet the 2020 Freedom Car weight and 14.9 km/L (35 mpg) CAFÉ requirements as currently mandated by the federal government. Developments in the industrial bio-technology sector are also leading to knowledge to provide opportunities to use bio-based materials to provide solutions using SMC to lower costs and weight. The National Composite Center is leading collaborative efforts in the development of biobased resins fillers and reinforcements. The result of these collaborations in both biobased materials and the interface of nano technology are presented. The opportunities exist for the development of biobased materials to produce a lighter weight SMC.
Renuva Soy-Based Polyol RIM for Automotive Exterior Applications
Dow Automotive & Magna/Decoma International, September 2008
There are many formative trends in today’s OEM composite marketplace which are driving the investigation and development of alternative feedstocks from natural or renewable resources in the plastics industry such as environmental sustainability reduced dependence on crude oil and the high cost of petroleum-based derivatives. This paper will describe the development of a novel soy oil based polyol (under the RENUVA™tradename) which has technological advantages in terms of odour physical properties compatibility and processability in polyurethane application over existing soy-based polyol. The paper will further describe the development partnership undertaken by The Dow Chemical Company and Polycon Industries (a division of Magna International) to utilize this “green” polyol to develop a Reaction Injection Moulded (RIM) polyurethane formulation suitable for painted exterior applications. The paper will outline the development aliterations done to accomplish this goal and to maximize the soy-based polyol content in the RIM composite for physical property and processability optimization. The paper’s conclusion will demonstrate the viability of a 50% soy-based polyol solution to meet the processability paintability and physical property specification of a current Original Equipment Manufacturer (OEM) RIM program through direct comparison of extensive trial work done on series production fascia tooling at Polycon. The paper will extend this development work into potential opportunities for the RIM polymer involving exterior composite applications for heavy equipment or agricultural machinery where natural resource feedstocks would have clear market desirability.
MEASUREMENT OF THE ABRASION CAPACITY OF FLEXIBLE FOAMS FOR FINISHING CRUDE POTTERY
Nora Catalina Restrepo-Zapata , Juan Sebastian Jaramillo , Andres Felipe Velez, May 2009
Ceramics processing industry employs foam materials in order to finish crude pottery because of its softness, elastic recovery, abrasion capacity, among others. At the moment, the ceramists in Colombia use marine sponge despite the increasing economic and environmental costs of this practice. This work explores the methods to produce a synthetic and feasible alternative for Colombian ceramic materials manufacturers based on morphologystructure- properties of the marine sponge and a comparison with thermoset and thermoplastic flexible foams. In addition, the abrasion capacity is calculated based on superficial quality in crude pottery by means of contact methods
PLASTIC MICROFLUIDICS: TRANSFORMATIVE TECHNOLOGY FOR TOMORROW
Patrick Mather , Sadhan Jana , Prithu Mukhopadhyay, May 2009
Abstract #1: Design, Fabrication and Applications of Polymer Microfluidic Biochips Microtechnology is initiated from the electronics industry. In recent years, it has been extended to micro-electro-mechanic system (MEMS) for producing miniature devices based on silicon and semi-conductor materials. However, the use of these hard materials alone is inappropriate for many biomedical devices. Soft polymeric materials possess many attractive properties such as high toughness and recyclability. Some possess excellent biocompatibility, are biodegradable, and can provide various biofunctionalities. I will first give a brief overview of major activities in our center on micro/nanomanufacturing of polymeric materials and microfluidics. An enzyme immunoassay chip will be discussed as an example for a low-cost and mass-producible lab-on-a-chip platform for molecular and biological analyses. The platform is a microfluidic CD for Enzyme-Linked Immunosorbent Assays (ELISA) that reduces cost, accelerates results, and improves reliability of analyses for food borne contaminants, cancer diagnoses and environmental contamination. The presentation will cover (1) optimization and integration of the critical microfluidic and biochip packaging methods developed for CD-ELISA applications, (2) development of manufacturing and detection protocols for the CD-ELISA chips, and (3) evaluation of the performance of CD-ELISA's by validating testing for food borne pathogens and cancer cytokines.?ÿ ?ÿ Abstract #2: Bio-applications of Microfluidics: A flexible microfluidic device to characterize bacterial biofilms We characterize the viscoelasticity of bacterial biofilms by means of a flexible microfluidic device. The biofilms are comprised of Staphylococcus epidermidis and Klebsiella pneumoniae.?ÿ The presence of implanted foreign bodies such as central venous catheters is a key risk factor for infection by bacteria of this kind.?ÿ Because of the sensitivity of biofilm properties to environme
STRATEGIES FOR THE REPLACEMENT OF LEAD- AND CHROME-BASED PIGMENTS IN SYTHETIC TURF
Tad Finnegan, May 2009
Lead- and chrome-based pigments have been used in synthetic turf due to their performance properties and low cost in use. Environmental and regulatory concerns about these heavy metal-based pigments are leading the synthetic turf industry to voluntarily adopt guidelines that will effectively eliminate their use by 2010. Currently, no drop in" replacements exist for lead-based pigments. The variety of polymers used in synthetic turf further complicates finding solutions. Reformulation strategies using organic and inorganic colorants along with light stabilization systems are presented for several polymers."
THERMAL AND RHEOLOGICAL STABILITIES OF PE AND PP DUE TO REPEATED PELLETIZNG
Rabeh Elleithy , Saeed Al-Zahrani , Babu Gajendran, May 2009
It is known that polymers properties could change due to repeated exposure to high temperatures and shear during processing and recycling. In this research the rheological and thermal properties of polyethylene (PE) and polypropylene (PP) were investigated. A twin screw extruder (Farrel FTX20) was used to expose PE and PP to repeated thermal history during pelletization. PE and PP were exposed to thermal histories up to 12 times during pelletization and re-pelletization processes. The rheological and thermal properties of the virgin polymer were compared to the re-pelletized ones. It was noticed that the melt viscosity of PE increased and that of PP decreased as the polymer was exposed to repeated pelletization. Additionally, the evaluated thermal properties of those of PE were not significantly changed, whereas, those of PP were affected.
TRENDS IN RESEARCH ON POLYMER FOAMS
Holger Ruckdäschel , Jan Sandler , Roland Hingmann , Klaus Hahn , Eric Wassner, May 2009
In recent years, concerns over environmental issues have led to a number of new regulations which have had a significant impact on the foams business in general and, in particular, for foams used in thermal insulation applications. Concerns over the depletion of the ozone layer and greenhouse gas emissions have led to the Montreal Protocol and measures to reduce the CO2 emissions. These regulatory issues in combination with traditional performance vs. cost issues are still driving changes in the global foams market today ' changes that are reflected both in the predictions of market growth as well as the technical demands placed on foamed products. In this paper, the expandable polystyrene (EPS) foam market is used to demonstrate the complex interactions of market forces versus technical progress when implementing successful foam products and processes for a wide-spread utilisation.
WELDABILITY OF POLYLACTIC ACID SHEETS AND FILMS
David Grewell , Julius Vogel , Kyle Haubrich , Gowrishankar Srinivashan, May 2009
In this work the weldability of PLA (Polylactic acid), a biodegradable polymer derived from corn starch was examined. Samples of biaxial oriented PLA films of various thicknesses were impulse and ultrasonic welded at various processing parameters. The results showed that relatively high weld strengths could be achieved with impulse welding over a relatively wide range of parameters. In addition, ultrasonic welding produced samples of relatively high strength too. However, while this process can be used with faster cycle times, it was less robust. In detail, ultrasonic welded samples of a thickness of 254 'm that were welded with a cycle time of 0.25 s had a average strength of approximately 160 N, while the results showed a standard deviation up to 50 N. In impulse welding samples of 100 'm thickness welded at 2 and 3 s had a strength of approximately 75 N, while the deviation was approximately 3 or 4 N. It was also seen that sample thickness affected the optimized welding parameters as well as ultimate strength. Having a thickness of 305 'm the weld of the samples had a strength of 80 N while the strength was 25-30 N at a thickness of 200 and 254 'm and a weld time of 0.15 s.
Sugar-powered fuel cells
H. Thomas Hahn, Hak-Sung Kim, Jongeun Ryu, June 2009
High-intensity light pulses provide a means of making nanoscale modifications to electrode surfaces that is fast, inexpensive, and green.
Economics, sustainability, and the public perception of biopolymers
Roger Jones, July 2009
Biopolymers are a growing and useful sector of the plastics industry but are not a substitute for conventional polymers.
An Investigation of ‘Green’ Class-A SMC
Thomas Steinhäusler, September 2009
Saturated- and unsaturated-polyester resins containing glycols made from renewable or recycled sources are being developed as a way to become less dependent on petroleum-based glycols. In this study SMC performance of standard-density Class A automotive SMC containing polyester resins produced from petroleum-based glycols was compared to standard-density Class A automotive SMC containing polyester resins produced from renewable-source glycols. The evaluation included processing aesthetics and adhesion performance. Finally a new low-density Class A automotive SMC containing polyester resins produced from renewable-source glycols will be introduced.
Development of Injection Moldable Composites Utilizing Annually Renewable Natural Fibers
Ellen Lee, September 2009
In order to advance the commercialization of natural fiber reinforced plastics for automotive use a partnership was formed between academia natural fiber processor material supplier and OEM. This partnership improved the communication along the supply chain and resulted in optimized material properties to meet OEM specifications and application part performance. Several products have been developed that meet current material specifications offer significant weight savings over conventional mineral- and glass-reinforced composites and are competitively priced.
Bio-Based Polymers from Soy Chemistry
Dwight Rust, September 2009
Research on the use of soybeans to produce polyurethane polyols unsaturated polyester resins and thermoplastic fibers has been funded by the United Soybean Board (USB). The USB funds a wide range of activities including research and development of new industrial products made from soy. These developments have resulted in new patented technology. Commercialization of this technology has resulted in the production of unsaturated-polyester resins for fiberglass-reinforced composites and urethane polyols for polyurethane foams. The commercial applications of these bio-based polymers are found in a wide range of applications in the transportation markets.
Renewable Resource-Based Composites for the Automotive Industry
Dejan Andjelkovic, September 2009
The incorporation of renewable resources in composite materials is a viable means to reduce environmental impact and support sustainability efforts in the composites industry. This paper will focus on unsaturatedpolyester resins prepared from renewable resources and their use in composite materials. Applications of these resins in the automotive industry will be described including a comparison of properties and performance vs. typical petroleum-based resins.
Renewably Sourced Engineering Polymers for High-Performance End-Use Applications
Richard Bell, September 2009
External trends have continued to drive end users in consumer and industrial applications to seek renewably sourced and sustainable solutions to use in more and more demanding applications. To meet this need a portfolio of renewably sourced engineering materials was developed. The products are designed to provide performance and functionality equivalent to or better than today’s petroleumbased materials while reducing the environmental footprint. The portfolio includes glass-reinforced thermoplastic grades for high strength and stiffness.
Zero-Emission Acrylic Thermoset Technology
Gero Nordmann, September 2009
In today’s environment there is an ever-increasing desire to ‘circle the square’ reaching high-performance durability light weight and manufacturing flexibility without increasing and even trying to lower overall system costs. This presentation will discuss a new enabling technology platform engineered towards these ends: cross-linked thermoset acrylics. These are non-flammable zero-emission systems that contain no volatile or hazardous components at any stage of their life cycle. They are easy to use in molding processes and ideally suited for today’s ‘greener’ lightweight automotive composites. Their application in natural fiber composites will also be outlined in the presentation.
Material characterization of novel bioplastics for food packaging
Yael Vodovotz, Sunny Modi, Kurt Koelling, September 2009
Composite polymers based on bioresins have attractive advantages, but require additional research for use in foodstuff industries.
Improving the properties of polylactic acid
Rahul Rasal, Douglas E. Hirt, October 2009
The toughness, stiffness, and strength of eco-friendly polymers can be modified without significantly affecting optical clarity.
Microcellular processing of biobased, biodegradable polymer blends
Shaoqin Gong, Srikanth Pilla, Lih-Sheng Turng, Jungjoo Lee, Alireza Javadi, Adam J. Kramschuster, April 2010
Using microcellular injection molding to prepare renewable polymer composites could lead to components with lower cost, improved material properties, and an extended range of applications.
Using low-cost waste for polyhydroxybutyrate bioplastics
Marysilvia Ferreira da Costa, Carolina Carvalho de Mello, Jeremias de Souza Macedo, Rossana M. S. M. Thire, April 2010
Biopolymer-based composites reinforced with a byproduct of coconut-fiber processing were made successfully using compression molding.


This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.




spe2018logov4.png

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers, ISBN: 123-0-1234567-8-9, pp. 000-000.
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net