SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library
Keyword/Author:
After Date: (mm/dd/yy)  
 
Sort By:   Date Added  ▼  |  Publication Date  ▼  |  Title  ▼  |  Author  ▼
= Members Only
Recycling
Various topics related to sustainability in plastics, including bio-related, environmental issues, green, recycling, renewal, re-use and sustainability.
Limitations & Level of Accuracy of Tests for Rotomolding Powders
Nick Henwood, May 2014
The rotomolding industry commonly uses two connected tests to assess the quality of plastic powders: Dry Flow and Bulk Density. Industry-specific test methods are available for both parameters. Repeated measurements were carried out on five different rotomolding powders, in order to assess the influence of the various equipment and environmental parameters that are thought to affect the test. This enabled estimates to be made of the limits for the accuracy and repeatability that are achievable practically. The results obtained from the Dry Flow test suffer from significantly higher variance than those obtained from the Bulk Density test.
Mechanical Properties of Biodegradable Poly(Butylene Succinate) Blended with Poly(Ethylene Terephthalate) Recycle
Nattakarn Hongsriphan, Pitchaya Naneraksa, Alongkorn Popanna, Arrtith Eksirinimit, Siwipon Soponsiriwat, May 2014
This research was carried out to improve mechanical properties of PBS by melt blending with recycled PET flakes from drinking bottles. Content of PET adding was 1, 2 and 5% by weight. Properties of polymer blends were evaluated by tensile test, impact test, SEM, DSC, and TGA. It is found that blending PET into PBS yielded stronger mechanical properties compared to neat PBS. However, melt blending between them required high temperature enough to melt PET flakes, so it caused thermal scission in PBS molecules as evidenced in TGA analysis. PBS/PET blends had higher tensile modulus but reduced flexibility with higher PET content. For DSC analysis, it is found that blending PBS with PET increased crystallinity of PBS matrix due to nucleating effect of PET dispersed spheres.
Microcellular Foaming Behavior of Poly(butylene succinate)/Nanosized Calcium Carbonate Composites
Tairong Kuang, Peng Yu, Binyi Chen, Xiangfang Peng, May 2014
In this paper, the foaming behavior and thermal property of biodegradable poly(butylene succinate) (PBS)/nanosized calcium carbonate(nanoCaCO3) composites were investigated. This article focused on the study of the effect of nanoCaCO3 on foam morphology of PBS using supercritical CO2 as the foaming agent. The presence of nanoCaCO3 acted as nucleation site to facilitate the crystallization of PBS that results in the increase of PBS crystallization up to 63.63%. The effect of incorporation of the nanoCaCO3 particles on the thermal stability was quantified by the temperature at 5% and 10% weight loss. Along with the addition of nanoCaCO3, the temperatures at 5% and 10% weight loss of PBS/nanoCaCO3 composites are higher than pure PBS. The SEM results shows that with the addition of nanoCaCO3, the foam samples cell size decreased and cell density increased greatly.
Morphological Analysis of Natural Fibers and Fiber Orientation Measurements for the Evaluation of Simulation Tools for Injection Molding Materials – NFC-Simulation
Katharina Albrecht, Jörg Müssig, May 2014
Due to environmental and sustainability issues, the request for renewable resources increases. Natural fiber-reinforced injection molded materials are therefore an interesting prospect for the automotive industry. To achieve a broader market launch of this new material in the automotive industry, numerical simulation of this new material is essential. Besides rheological and mechanical properties, the fiber morphology and the fiber orientation are the most important properties for the simulation. To evaluate the simulation results experiments are necessary. The morphology of natural fibers (sisal, hemp and regenerated cellulose fibers) was determined by image analysis of the original fibers and the fibers after the procedures of compounding and injection molding. Therefore the fibers were extracted from the granules and the injection molded components. The size of the fibers was significantly reduced during the compounding process, whereas no further reduction could be observed during the injection molding process. Quantitatively, the same results could be found in simulation based on a mechanistic model. Fiber orientation measurements were done via TeraHertz Spectroscopy to evaluate the simulation of the injection molding process and to be able to predict the mechanical properties of the components.
Morphological and Rheological Properties of PBS/Silica Nanocomposite Manufactured Using a High-Speed Twin-Screw Compounder
Xun Chen, Bin Tan, Margaret Sobkowicz, May 2014
The effects of silica chemistry and high-speed compounding on the morphology and rheology of poly(butylene succinate) (PBS)/fumed silica nanocomposites were investigated in this work. The filler content of the nanocomposites was determined by thermogravimetric analysis and matched estimated values well. Depending on the distribution and surface chemistry of fillers, distinct surface texture could be identified in the PBS/silica nanocomposites. Using high-speed mixing and compatibilizing surface functionalizations can result in enhanced polymer-particle interactions and influence the composite rheology dramatically. The relaxation hierarchy can be identified from the linear viscoelastic response of PBS compounded with mixture of modified and pure fumed silica particles.
Morphology and Mechanical Properties of Polylactic Acid/Cellulose Nanofiber Composite Foams
WeiDan Ding, Peiyu Kuo, Chul B. Park, Mohini Sain, May 2014
This paper investigates the foaming behaviors of polylactic acid (PLA)/cellulose nanofiber composites and the mechanical properties of the composites and their foams. The composites were fabricated by mixing PLA and nanofibers in a solvent with different fiber contents, followed by drying and hot pressing into test specimens. The composites were then foamed via a batch foaming process with CO2 as a blowing agent at different foaming conditions. The effect of nanofiber content on the cell morphology of PLA was studied. The impact strength and thermo-mechanical properties of PLA composites and their foams were also investigated.
Morphology and Physical Properties of Biodegradable Multicomponent Blends with Polylactic Acid
Ali M. Zolali, Basil D. Favis, May 2014
Poly(lactic acid) (PLA) is one of the most promising biodegradable aliphatic polyesters derived from renewable resources and has received significant attention over the last decade. The blending of PLA with poly(butylene adipate-co-terephthalate) (PBAT) and poly(butylene succinate) (PBS) is employed to overcome its inherent drawbacks. All prepared fully biodegradable blends show a thermodynamically stable complete wetting behavior which was in good agreement with the thermodynamic analysis. The results for the ternary blends demonstrate a viable route towards the achievement of biodegradable polymers systems with a highly balanced property set.
Notes on Characterization of Natural Fiber Polypropylene Composites
Ahmed El-Sabbagh, Amna Ramzy, Leif Steuernagel, Stefan Kirchberg, Dieter Meiners, Gerhard Ziegmann, May 2014
Injection molding simulation of natural fiber thermoplastic composites NFTC requires material full characterization of the following parameter: density, thermal expansion, viscosity, (Pressure- Volume- Temperature) PVT-behavior, thermal conductivity, thermal degradation, polymer structure, specific heat and dynamic mechanical properties. The effect of fiber type (regenerated cellulose, sisal, hemp, wood fiber, wheat straw and kenaf), fiber content (10 and 30 wt.-%) and fiber length (0.5 and 1.5 mm for cellulose) on the mentioned material parameter as well as on their processing behavior during injection in a spiral mold was characterized. Compound viscosity and fiber type/ size were correlated. Other auxiliary results are found in this study concerning the constancy of fiber content along the injected products and the pore formation due to the inevitable gas evolution from the natural fibers.
Novel Development Flame Retardant Additive for Environmentally Friendly Flame Retardant PVC Compounds
Zheng Qian, James Day, Curt Collar, May 2014
Historically phthalates have been used as plasticizers in PVC to provide flexibility over a wide temperature range. In applications where higher flame retardancy is needed along with flexibility, brominated phthalates have been used to meet the requirements. DynaSil™ is a novel flame retardant synergist that has properties of flexibilizing PVC while allowing for the replacement for antimony trioxide (ATO), brominated phthalate plasticizer, and/or ammonium octamolybdate (AOM) in PVC formulations. The results show that by using the DynaSil™, brominated phthalates, ATO and AOM can be replaced without loss of flame retardant properties, sacrificing flexibility, and negatively affecting smoke properties. In addition, DynaSil™ can preserve or improve performance properties such as tensile and elongation while providing a very eco-friendly solution at reduced costs.
Novel Melt Filtration Technology for Challenging Recyclate
Noah Grade, Martin H. Mack, May 2014
The American market for recycled plastic offers both enormous economic potential and strategic challenges. Especially in light of the domestic shale oil boom, recyclers must find ways to maintain competitive advantage in the market. Tackling increasingly contaminated, wet and hard-to-process materials offers a path to this end. Co-rotating twin screw extruders are well suited for accepting plastic regrind of different shapes, bulk densities and contamination levels. Energy extensive drying steps after the washing process can be eliminated, when steam and moisture is removed in special venting barrels. In this paper, process experiences with a novel continuous melt filter are presented, which offers superior processing and flexibility for recyclers to capture untapped value. The functionality and processing potential of this filter in combination with the twin screw extruder is explained by using examples from the post- industrial recycling market, the automotive recycling effort and as well as the post-consumer recycling sources.
Paper Plastic Composites from Recycled Disposable Cups
Jonathan Mitchell, Robert Dvorak, Edward Kosior, Chris Cheeseman, Karnik Tarverdi, Luc Vandeperre, May 2014
The majority of disposable cups are made from paper plastic laminates (PPL) which consist of high quality cellulose fibre with a thin internal polyethylene coating. There are limited recycling options for PPLs which has contributed to disposable cups becoming a high profile, problematic waste. In this work disposable cups have been shredded to form PPL flakes and these have been used to reinforce polypropylene to form novel paper plastic composites (PPCs). Samples were characterised using mechanical analysis and thermogravimetric analysis (TGA). The work demonstrates that PPL disposable cups have potential to be beneficially reused as reinforcement in novel polypropylene composites.
Poly(Lactic Acid) with Improved Melt Strength and Gardner Impact Strength
Leonard H. Palys, May 2014
Poly(lactic acid) or PLA is a commercial biopolymer made from lactic acid derived from sugar fermentation. “Greenbased” [1] PLA is desired as a biodegradable film, sheet and food packaging alternative to oil-based polymers. PLA has a Tm melting point range of 150-162°C [2]. Unfortunately, PLA has poor melt strength and impact strength. High melt strength and impact strength are important properties when manufacturing sheet, film, fibers and molded goods. In this paper we explored several ideas to improve the performance of PLA while maintaining its “green” characteristics. We found that an acrylic based core-shell polymer used at a low concentration significantly increased the Gardner impact strength of 15mil extruded sheet. Also, a high molecular weight acrylic copolymer used at low levels doubled the PLA melt strength. Lastly, reacting PLA with organic peroxides increased the shear modulus, molecular weight and melt strength based on rheometer, multi-angle light scattering and Rheotens analysis.
Polyvinyl Alcohol Foaming with CO2 and Water as Co-Blowing Agents
Na Zhao, Lun Howe Mark, Changwei Zhu, Chul B. Park, Qian Li, Robert Glenn, Ryan Thompson, May 2014
This paper investigated the continuous extrusion foaming of a biodegradable polymer, polyvinyl alcohol (PVOH), using supercritical carbon dioxide (scCO2) as the blowing agent. As-received PVOH pellets were first compounded with water to decrease the melting point of PVOH. In addition, the water can help to reduce the potential for thermal degradation during the extrusion foaming process. Furthermore, water also served as a co-blowing agent together with scCO2 to achieve high expansion and high cell density biodegradable polymer foams. The effect of scCO2 content and die temperature variations on the expansion ratio and cellular morphology of the PVOH foam were examined systematically.
Post-Consumer Recycle (PCR) Solution for PC/ABS Blends
Huanbing Wang, May 2014
To meet the continued commitment on environmental sustainability, SABICTM has developed and commercialized PCR PC/ABS blends portfolio, which provide more options for customer to choose Cycoloy product. PCR Cycoloy grades are all PC/ABS blends containing 30~35% recycled polycarbonate from post-consumer CD and/or water bottle. RCM6123 and RCM6134 are filled grades, while RCY6214, RCY6113, RCY6013 and RCY6713 are non-filled. These grades were developed for various applications with additional value on environmental sustainability. At the same time, in most applications they showed comparable properties to corresponding virgin grade.
Processing of Biomass Fillers and Reinforcements at Entitled Capacity on Co-Rotating Twin Screw Extruders
Jatin Panchal, Dr. Babu Padmanabhan, Robert Roden, May 2014
Polymers are increasingly being combined with renewable biomass fillers and reinforcements to improve product performance, reduce cost, reduce product density, improve aesthetics and/or reduce the carbon footprint typically associated with plastics. The use of renewable materials for fillers and reinforcements in plastics has existed for several decades, however, their acceptance is rapidly expanding due to increasing plastics costs and environmental concerns. Unfortunately, a common property most of these materials share - sensitivity to heat and shear, limits their availability to be mass produced in an efficient manner in order to be cost competitive with commodity plastics and thermoplastic composites. However, a better understanding of the physical mechanisms that contribute to the onset of thermal degradation and of the technologies available to prevent such can enable significant capacity enhancements when processing biocomposites using co-rotating twin screw extruders. Another characteristic of many of these materials is that they possess a low bulk density, making them difficult to transport into the extruder at a high throughput. Technologies have recently emerged that can effectively improve the conveying efficiency of “difficult-to-feed” fillers and reinforcements.
Processing Research and Development of ‘Green’ Polymer Clay Nanocomposites Containing Polyhydroxybutyrate, Vinyl Acetates, and Modified Montmorillonite Clay
James N. McKirahan, Jr., May 2014
The purpose of this research was to determine the feasibility of direct melt-blending (intercalation) montmorillonite nanoclay to polyhydroxybutyrate along with vinyl acetate, at different weight percentages, to enhance plasticization using typical plastic processing equipment and typical processing methodology. Single screw and twin screw extrusion, Banbury mixer compounding, and compression molding were used to intercalate montmorillonite, and for sample preparation purposes, to test tensile and flexural strength of the resultant polymer clay nanocomposites (PCN) developed. Dynamic mechanical analysis of tensile strength and flexural strength was compared as a result of this processing. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and melt flow analysis (MFI) were used to determine the thermal and flow properties of the PCN materials produced during the research.
Properties and Foaming Behavior of Biodegradable Poly(Lactic Acid)/Poly(Butylene Succinate) Blend
Peng Yu, Tai-rong Kuang, Bin-yi Chen, Xiang-fang Peng, May 2014
Biodegradable poly(lactic acid)/poly(butylene succinate) (PLA/PBS) blends with various blending ratios were prepared by melt mixing for properties and foaming studies. The phase morphology and thermal properties were investigated using scanning electron microscopy and differential scanning calorimetry, respectively. The studies show that PLA/PBS is immiscible blend, and PBS has an effect of plasticizer on PLA, promotes PLA crystallinity with the addition of PBS, meanwhile, decrease the thermal stability of PLA. Supercritical carbon dioxide foaming study shows that the composites foams exhibit larger cell size and smaller cell density compared with neat PLA foam due to lower melt strength of PBS.
Recent Advances in Glass Bubble Polymer Compounds
Baris Yalcin, Steve E. Amos, Mark J. William, Stefan Friedrich, Friedrich Wolff, Dae-Soon Park, Takujirou Yamabe, Jean-Marie Ruckebusch, May 2014
Glass Bubbles (Hollow Glass Microspheres), due to their unique spherical geometry and low density, provide several benefits in thermoplastic composites. They help produce lighter weight parts in order to achieve stringent fuel economy targets for automotive and aerospace manufacturers. They also provide productivity benefits through shorter cooling times, enhanced dimensional stability and less warpage – helping to reduce waste and improve throughput. In this paper, we provide solutions to achieve high impact strength in glass bubble polyolefin composites through the combination of impact modifiers and compatibilizers as well as demonstrate how GBs can be combined with supercritical foaming technology to achieve double digit weight savings with well maintained properties primarily for glass fiber filled composites.
Sb2O3 Free FR PBT Product Development
Yuzhen Yang, Tianhua Ding, May 2014
Antimony trioxide (Sb2O3, ATO) is widely used as a flame retardant in combination with halogenated materials. The combination of the halides and the antimony is the key to the flame-retardant action for polymers, helping to form less flammable chars. The Objective of this work is to develop ATO free FR PBT products with equal robust FR properties. Many candidates were screened to replace ATO as the flame retardant synergist. Among them all, one FR combination package with no ATO was tried in a glass filled PBT system. Experimental results demonstrated that this ATO free FR PBT product shows good flame properties and passes UL 94 V0 rating @ 0.71 mm thickness. Meanwhile, the physical properties, mechanical properties, and processability were all well maintained. In addition, the ATO free FR PBT formulation is very robust against both extreme extrusion conditions and abusive molding conditions even when recycle materials are incorporated. The same ATO free FR package has the potential to work in other unfilled and filled PBT resins or blends too.
Solid Phosphorous Based Flame Retardants in Impact Modified Polycarbonate Blends for Superior Properties
Vikram K. Daga, May 2014
Phosphorous based flame retardants have been widely employed as eco-friendly flame retardants for impact modified polycarbonate (PC) blends but some of the liquid phosphates cause significant deterioration in key physical properties like impact strength and heat deflection temperature. This work shows results from recent developments at SABIC in order to achieve superior physical properties while maintaining thin-wall UL94 V0 ratings by using solid phosphorous based flame retardants. Additionally, some of these blends also show significantly improved hydrolytic stability which could translate into a more sustainable solution enabled by longer service life for parts made out of such materials.


This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.




spe2018logov4.png
  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net