SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library
Keyword/Author:
After Date: (mm/dd/yy)  
 
Sort By:   Date Added  ▲  |  Publication Date  ▲  |  Title  ▲  |  Author  ▲
= Members Only
Sustainability
Various topics related to sustainability in plastics, including bio-related, environmental issues, green, recycling, renewal, re-use and sustainability.
The Use of Peroxide Masterbatches in the Processing of Regrind and Post Consumer Waste
Marty Paisner, March 2008
To be both green and profitable, many plastic manufacturing processes need to reprocess scrap into useful, saleable products. By its very nature the regrind derived from scrap is usually heterogeneous particularly by way of its melt properties. The proper use of peroxide masterbatches can transform regrind, and also post consumer waste, into a useful raw material stream where not only the melt properties are homogenous, but other desirable properties are developed, resulting in high quality products. This paper shows the chemistry behind peroxide‐induced modifications of polypropylene and polyethylene, the increased melt flow rate by using peroxides in reaction extrusion, the advantages of using the peroxide additive in concentrate form, and a method for increasing the properties of commingled polypropylene and polyethylene.
A PLASTICS EDUCATION OUTREACH PROGRAM FOR MIDDLE SCHOOL AGED GIRLS
Elizabeth Dell, May 2008
This paper describes a plastics education program for middle school girls. The goals of the program were to expose the girls to science and engineering and to educate them about plastics. The program included an overview of plastics and hands-on experimental investigations. Experiments included making a polymer environmental issues and the structure and properties of polymers. In addition to giving detailed descriptions of the program this paper includes recommendations for further improvements of the program.
ADVANCED RESULTS OF A PROSPECTIVE STUDY ON FLEXIBLE PLASTIC PACKAGING IN ANDEAN COUNTRIES: SCENARIOS AND STRATEGIES FOR THE PERIOD 2003 ƒ?? 2013
María del Pilar Noriega , Juan Diego Sierra, May 2008
A prospective study on flexible plastic packaging was carried out in Andean Countries with the participation of two plastic research institutes and 20 companies including raw material manufacturers processors converters and end users.The inputs of this prospective study were a review of the state of the art on flexible packaging a benchmarking study considering the 10 most important companies a study using the Delphi method with national and international experts who identified the key variables to the development and progress of the flexible packaging in the region and workshops.This study generated new projects and products on the field of barrier smart and active packaging biodegradable materials among others; it shows that the Andean region is applying R&D and technological alliances in its industrial processes.
BENEFITS OF AN ENERGY USAGE INDICATOR FOR INJECTION MOLDING SIMULATION
Paul Brincat , Russell Speight, May 2008
With growing concern regarding our environmental impact greater focus has been placed on ways we can reduce our impact by improving our decisions designs and processes. The use of injection molding simulation has been shown to reduce material consumption reduce production scrap assist in recycling existing materials create better quality products that have a prolonged life and reduce energy consumption required during the manufacturing process. This paper will present the benefits of an additional measure called an Energy Usage Indicator that can assist part designers using injection molding simulation to easily identify the processing requirements of a polymer material.
BENEFITS OF AN ENERGY USAGE INDICATOR FOR INJECTION MOLDING SIMULATION
Paul Brincat , Russell Speight, May 2008
With growing concern regarding our environmental impact, greater focus has been placed on ways we can reduce our impact by improving our decisions, designs and processes. The use of injection molding simulation has been shown to reduce material consumption, reduce production scrap, assist in recycling existing materials, create better quality products that have a prolonged life and reduce energy consumption required during the manufacturing process. This paper will present the benefits of an additional measure, called an Energy Usage Indicator, that can assist part designers using injection molding simulation to easily identify the processing requirements of a polymer material.
EFFECT OF ENVIRONMENTAL STRESS CRACKING AGENTS ON FATIGUE AND CREEP OF A MDPE PIPE
R. Ayyer , A. Hiltner , E. Baer, May 2008
The effect of concentration of Igepal CO 630 on slow crack propagation in MDPE pipe was investigated. The kinetics and mechanism of crack propagation in fatigue at R=0.1 and creep at 50 ?øC were compared to those in air. The fatigue and creep behavior followed the same stepwise crack growth mechanism as in air at all the concentrations used. As the concentration increased to 0.01 vol. % the creep lifetime decreased significantly whereas the lifetime in fatigue gradually increased. At higher concentrations the lifetime was similar in creep and fatigue.
FAILURE ANALYSIS OF A PLASTIC SLIDE VALVE ASSEMBLY
Ahamed Shabeer, May 2008
Premature cracks were observed during service in the slide valve assembly molded from an acrylonitilebutadiene- styrene resin. The investigation focused on the determination of nature and cause of the failure. The results obtained during the evaluation indicated that the failure was due to environmental stress cracking which occurred as a consequence of the presence of the residual stress and the stress cracking agent. This paper will focus on the testing used to characterize the failure mode and identify the cause of the cracking of the slide valve assembly.
FAILURE ANALYSIS OF A PLASTIC SLIDE VALVE ASSEMBLY
Ahamed Shabeer, May 2008
Premature cracks were observed during service in the slide valve assembly molded from an acrylonitilebutadiene- styrene resin. The investigation focused on the determination of nature and cause of the failure. The results obtained during the evaluation indicated that the failure was due to environmental stress cracking, which occurred as a consequence of the presence of the residual stress and the stress cracking agent. This paper will focus on the testing used to characterize the failure mode and identify the cause of the cracking of the slide valve assembly.
CHARACTERISATION OF BIOACTIVE POLYCAPROLACTONE
P. Douglas , G. Walker , D. Jones, May 2008
The effects of a bioactive [Nalidixic Acid - NA] and copolymers [Poly L-Lactic Acid (PLLA) and Polyethylene Glycol (PEG)] on the drug release morphology and mechanical properties of Poly -caprolactone [PCL] were studied. Release of NA increased with the addition of copolymers in the PCL with a maximum release of 55% in a blend containing 5%w/w each of PLLA PEG and NA. The filler effect of the NA was illustrated by an increase in viscosity in the blends. FTIR spectrums showed the blending of the PCL and the NA. The carbonyl bond present in the biodegradable polymers PCL and PEG allowed for some degree of miscibility also confirmed by the decrease in thermal conductivity from 0.26 to 0.2 Wm'C. Mechanical properties were decreased by the copolymers with the Young's Modulus decreasing by 15%.
CHARACTERIZATION OF BIODEGRADABLE ACRYLIC ACID GRAFTED POLY(?-CAPROLACTONE)/CHITOSAN BLENDS
Yeh Wang , Jiang-F. Yang, May 2008
Blend films of acrylic acid grafted polycaprolactone (PCLgAA) and chitosan (CS) with different compositions were prepared from aqueous acetic acid solution. DSC measurements showed that the melting temperatures and enthalpies of the blends decreased with increasing CS content. From FTIR results it can be seen that the amino groups of CS form covalent bonds with the carboxylic groups of PCLgAA in addition to hydrogen bonds between these components in the blends. Though the crystal structure of the PCLgAA component was not changed as proved by WAXD results blending CS suppressed the crystallinity of the blends. Furthermore the ductility of CS was increased during tensile testing in PCLgAA/CS blends due to enhanced affinity between the two components. However PCLgAA/CS blends showed greater resistance than PCL/CS blends to biodegradation in an enzymatic environment.
CHARACTERIZATION OF BIODEGRADABLE ACRYLIC ACID GRAFTED POLY(?-CAPROLACTONE)/CHITOSAN BLENDS
Yeh Wang , Jiang-F. Yang, May 2008
Blend films of acrylic acid grafted polycaprolactone (PCLgAA) and chitosan (CS) with different compositions were prepared from aqueous acetic acid solution. DSC measurements showed that the melting temperatures and enthalpies of the blends decreased with increasing CS content. From FTIR results it can be seen that the amino groups of CS form covalent bonds with the carboxylic groups of PCLgAA in addition to hydrogen bonds between these components in the blends. Though the crystal structure of the PCLgAA component was not changed, as proved by WAXD results, blending CS suppressed the crystallinity of the blends. Furthermore, the ductility of CS was increased during tensile testing in PCLgAA/CS blends due to enhanced affinity between the two components. However, PCLgAA/CS blends showed greater resistance than PCL/CS blends to biodegradation in an enzymatic environment.
DEVELOPMENT OF ANTIMICROBIAL PLA NANOCOMPOSITES WITH SILVER CONTAINING LAYERED NANOCLAYS FOR PACKAGING AND COATING APPLICATIONS
M.A. Busolo , M.J. Ocio , J. M. Lagaron, May 2008
This paper presents the development and characterization of the antimicrobial activity of a novel family of commercial food contact compliant silver-modified nanolayered clays and of their nanobiocomposites with polylactic acid. The antimicrobial nanolayered clays showed an antimicrobial effectiveness of 99.99% against Gram-negative Salmonella spp. In addition the PLA-clay nanocomposite also showed a significant antimicrobial activity and a synergistic water vapour permeability reduction of 32% with respect to neat PLA. The results indicate that these novel active nanolayered fillers can potentially exhibit numerous applications in plastic and bioplastic packaging and coatings where simultaneous barrier and antimicrobial performance are desirable.
DEVELOPMENT OF ANTIMICROBIAL PLA NANOCOMPOSITES WITH SILVER CONTAINING LAYERED NANOCLAYS FOR PACKAGING AND COATING APPLICATIONS
M.A. Busolo , M.J. Ocio , J. M. Lagaron, May 2008
This paper presents the development and characterization of the antimicrobial activity of a novel family of commercial food contact compliant silver-modified nanolayered clays and of their nanobiocomposites with polylactic acid. The antimicrobial nanolayered clays showed an antimicrobial effectiveness of 99.99% against Gram-negative Salmonella spp. In addition, the PLA-clay nanocomposite also showed a significant antimicrobial activity and a synergistic water vapour permeability reduction of 32% with respect to neat PLA. The results indicate that these novel active nanolayered fillers can potentially exhibit numerous applications in plastic and bioplastic packaging and coatings where simultaneous barrier and antimicrobial performance are desirable.
PROCESSING AND BLENDS OF BIOPLASTICS
Stephen P. McCarthy, May 2008
Biopolymers are generally defined as polymers that are found in nature derived from nature or utilized as medical implants. Polymeric biomaterials which are utilized as medical implants are typically characterized for enduse performance as well as processability. While lactic acid is found in the human body polylactic acid is derived from natural resources and utilized as medical implants. This paper will utilize poly(lactic acid) as an example of a bioplastic where the morphological and isomeric structure has an influence on end-use properties such as mechanical properties biodegradability and biocompatibility.
SCREW DESIGN CONSIDERATIONS FOR BIOBASED POLYMERS
Edward Steward, May 2008
The family of biobased polymers is ever growing in number and in popularity and the extruder/screw manufacturing businesses need to keep abreast of the machinery requirements of these polymers to insure that efficient processing is understood. This paper will look at the extrusion parameters and logic that are important to determining the most efficient screw designs and extrusion operating conditions for processing biopolymers. Vented and non-vented operation will be discussed. PLA data will be used as the basis for the conclusions.
SCREW DESIGN CONSIDERATIONS FOR BIOBASED POLYMERS
Edward Steward, May 2008
The family of biobased polymers is ever growing in number and in popularity and the extruder/screw manufacturing businesses need to keep abreast of the machinery requirements of these polymers to insure that efficient processing is understood. This paper will look at the extrusion parameters and logic that are important to determining the most efficient screw designs and extrusion operating conditions for processing biopolymers. Vented and non-vented operation will be discussed. PLA data will be used as the basis for the conclusions.
THERMAL DEGRADATION OF FIBER-REINFORCED BIO-BASED RIGID POLYURETHANE FOAMS
Andres Garcia , Patricia Alvarado , Maria Sibaja , Guillermo Jimenez , Jose Vega, May 2008
Rigid polyurethane (PU) foams were prepared by a multi- step procedure using a polyol blend of poly(ethylenglycol) PEG-200/pineapple molasses and 4 4'-diisophenylmethane diisocyanate (MDI) with a NCO/OH ratio of 1.2. Such material was reinforced with fibers from banana rachis with a fiber composition ranging from 18% to 40% wt.Thermal and themooxidative degradation properties of these composites were assessed. Thermal degradation of PU60 showed the highest polymer lifetime values.
TOWARDS QUALITY PRODUCTS FROM BIO-BASED PLASTICS
Rolf Koster, May 2008
The importance of three inter-dependent factors, i.e., (1) materials, (2) manufacturing, and (3) design and engineering, is generally recognized. All factors are indispensable and equally important for product development. Manufacturing is often the least structured factor and many designers and materials experts do not consider themselves capable to deal with it. Fortunately, expertise is sufficiently available and the best professionals are able to utilize plastics expertise properly in collaborative product development.
FEASIBILITY STUDY OF THE USE OF DDGS PLASTIC COMPOSITES
David Grewell , Gowrishankar Srinivasan , Maria Baboi, May 2008
Recently, an increase in the demand for ethanol as a fuel additive has resulted in a dramatic increase in its coproducts namely distiller’s dried grains with solubles (DDGS). This work studied a composite of DDGS and conventional petrochemical plastics (polyvinyl chloride) for applications in windows construction. The goal was to characterize the composite and its processibility for “green” plastics. The experiments showed that DDGS can be effectively extruded with PVC; at low filler levels (5- 10%) of DDGs strengthening of the PVC was seen. However, higher filler levels (>10%) of DDGS degraded the mechanical properties of PVC/DDGS composites. Also, ground DDGS perform better as reinforcement agents compared to standard DDGS. Caustic pretreatment was also studied and it was found not to effect the mechanical properties significantly. Also, the addition of PVA had little effect on the properties of the composite.
NEW LOW GLOSS POLYCARBONATE BLENDS FOR AUTOMOTIVE APPLICATIONS
Marina Rogunova , Jim Mason , Robyn Francis, May 2008
Automotive original equipment manufacturers are consistently looking for low-gloss materials for interior applications that can stand up to years of wear and tear and environmental exposure yet maintain aesthetic quality without painting. Bayblend?? LGX 300 resin is specifically developed for automotive interior applications requiring a material that is inherently low in gloss with extra flowability, good weathering and good scratch and mar resistance. Another important attribute of Bayblend LGX 300 is its low-emission characteristic, which is particularly important as automotive manufacturers strive to reduce the levels of VOCs in their automobiles to improve the interior environment and meet federal regulations. Because LGX 300 resin is a low gloss, high-flow polycarbonate (PC) blend with good heat and impact performance; thin-wall part design can be achieved without painting.


This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.




spe2018logov4.png
  Welcome Page

How to Reference Articles from the SPE Library:

Brief version (acceptable):
Author(s), SPE-ANTEC Tech. Papers, vol. no., page no. (year).
Proper version (preferred):
Author(s), “Title,” SPE-ANTEC Meeting in location: month, year, vol. no., page no.