The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.
The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?
Various topics related to sustainability in plastics, including bio-related, environmental issues, green, recycling, renewal, re-use and sustainability.
Properties of rubber compounds differ batch-wise. This can lead to waste and, thus, it is desirable to reduce these variations. One reason for quality variations of rubber compounds is the discontinuous way of compounding in internal mixers. Mixing effects make it difficult to adjust the process parameters of internal mixers in order to guarantee constant qualities. Experienced operators of internal mixers observe that characteristic noises during the mixing process can be correlated with the state of mixing. Thus, a project has been started to use these mixing noises for the development of a control system for internal mixers, which is able to characterize the state of the rubber compound. First, a measurement system has been implemented which allows the online visualization and recording of the mixing noise. It is systematically analyzed how the mixing noise is related to the state of mixing and the resulting elastomeric properties. The results show a correlation between filler incorporation and the characteristic sounds.
Prashant Mutyala, Mohammad Meysami, Shuihan Zhu, Costas Tzoganakis, May 2014
The usage of waste tire rubber crumb as a dispersed phase in a thermoplastic matrix has been a topic of study for a long time. Devulcanized rubber (DR) being relatively more similar to virgin rubber is expected to perform better than ground rubber tire crumb (GRT). There have not been many studies carried out on DR like in case of GRT. The present work is an extension of the previous work [1] which evaluated the efficiency of peroxide (PX)/sulphur (S) system to compatibilize devulcanized tire rubber (DRT) and PP. In this work, a similar study has been carried out on devulcanized EPDM (DRE)/PP blends and a comparison has been done with the earlier work. A statistical analysis has been carried out on the key mechanical properties namely tensile strength (TS) and elongation at break (EB). SEM pictures have been taken in an effort to understand the reasons for the mechanical properties obtained. The aim behind this work is to expand the commercial worth of DR in various applications.
María José Fabra Rovira, Amparo López-Rubio, Rocio Pérez-Masiá, Wilson Chalco Sandoval, Jose M. Lagaron, May 2014
Electrospinning has emerged as a versatile method to produce submicron fiber mats from natural or synthetic polymers. Electrospinning is a physical process used for the formation of ultrathin fibers by subjecting a polymer solution to high electric fields. At a critical high voltage (5-35 kV), the polymer solution droplets distort and forms the so-called cone of Taylor that erupts from the solution to form a charged polymer jet. This stretches and is accelerated by the electrical field towards a grounded and oppositely-charged collector. As the electrospun jet travels through the electrical field, the solvent completely evaporates while the entanglements of the polymer chains prevent it from breaking up. This results in the generation of highly functional and flexible ultrathin polymer fibers in the form of non-woven mats. Core-shell structures, produced by coaxial electrospinning, are of great interest for use in food packaging applications. In this area, our group has recently developed high throughput equipment based in a multinozzle coaxial technology that allows high productivity of fibers.
In this work, a mini-emulsion technique is used to prepare aqueous surfactant-stabilized suspensions of bio-based and optoelectronic polymers. Doctor blade coating is used to prepare films of controlled thickness. The relationship between colloidal suspension properties, processing parameters and film morphology is determined. This versatile wet coating process is appropriate for a large variety of applications, and the use of water instead of organic solvents improves the environmental profile of coating preparation. The required coating procedures and resulting properties are studied for two polymers: poly(3-hexylthiophene) and poly(butylene succinate), which find applications in polymer electronics and degradable packaging, respectively.
James M. Sloan, D. Flanagan, P. Touchet, H. Feuer, May 2014
The purpose of this work was to perform a comparative analysis of various candidate nitrile coated fabric materials supplied by potential vendors to be used as fuel storage tanks and compare the results to the currently fielded polyurethane storage tanks. Our strategy is to utilize advanced environmental aging methods to simulate extended weathering conditions. Our results demonstrate that the nitrile coated fabrics performed well in our evaluation. Their breaking strengths are about equal to the currently fielded urethanes and they performed comparably when subjected to environmental aging conditions.
Polyurethane (PU) foams were prepared using synthetic and bio-based polyol. In both cases, isocyanate content was reduced and cellulosic nanofibers and lignin were incorporated to achieve the desired rigidity. The experimental results indicated that the mechanical properties of 100% bio-based polyol PU foams exhibited higher performance compared to 100% synthetic polyol PU foam. The odor concentration of bio-based and synthetic PU foams showed in similar level. A automotive bumper energy absorber prototype has been developed from lignin and nanocellulose enhanced bio PU foams with reduced isocyanate content.
In this study, the effect of the addition of spherical silica particles on the morphology of poly (lactic acid)/polyethylene blends is studied. It is shown that the silica particles are selectively localized in the PLA phase. The effect of silica particle concentration in the PLA phase on the overall morphology of the blend structure is studied in detail.
Kendra Allen, David Grewell, Vijay Thakur, Michael R. Kessler, May 2014
Recently bio-based polymers procured from different natural resources have attracted greater attention as the viable eco-friendly alternatives to traditional petroleum-based products. Among various bio-based materials, vegetable oils represent one of the most abundant, low cost renewable material having the potential to be an ideal alternative to chemical feedstock/ traditional synthetic polymeric materials. Different derivatives of vegetable oils can be used as preliminary resources for the synthesis of a variety of materials (e.g. polyols, glycol, lubricants and plasticizers for polymers) owing to the high reactivity of their oxirane rings. So in this project, we have synthesized different soybean oil based elastomer using cationic/ free radical polymerization. Some preliminary study on the dynamic mechanical behavior of the synthesized elastomer has also been carried out.
Coconut shell and torrefied wood are bio-sourced and renewable materials that can be used as fillers in various polymer matrices. Torrefied wood material can be produced from numerous cellulose based materials, such as wood, sunflower hulls, flax shive, hemp and oat hulls. These bio-fillers would replace talc and glass bubbles which are not a renewable resource. Additionally, the implementation of torrefied wood and coconut would reduce the carbon footprint and improve sustainability of Hyundai and Kia vehicles. In this study, coconut and torrefied wood filled polypropylene properties are tested for a HVAC Case application.
Limitations in landfill capacity and the environmental impact of disposing of carpet waste in landfills have made recovering nylon from carpet waste an increasingly important enterprise. Since carpet compositions vary and can contain nylon-6 and/or nylon-6,6, along with variety of other materials, characterizing waste carpet composition and its thermal decomposition profile is essential for the recycling process. In this study, material recovered from carpet waste was analyzed by TG-FTIR, TG-MS, and TG-GC-MS. TG-GC-MS proved to be the most informative method of analysis because of its identification of organic decomposition productions characteristic of nylon-6 and nylon-6,6.
Medical products understandably must meet the highest level of quality and consistency due to the nature of their use. This often puts difficult demands on molders of plastic medical products who must work hard to meet quality restrictions through elimination of such things as hydraulic fluid and other contaminants in the molding area. As with all manufacturing there is the additional demand for reducing costs in a competitive market and this is always challenging. Finally, the global effort toward sustainability in manufacturing challenges molders and mold builders alike to jointly plan and implement more green manufacturing processes via a reduction in energy usage among other things. This paper will discuss the use of innovations within the injection mold manufacturing and molding markets that will help medical molders achieve clean room molding, cost reductions, and lower energy consumption.
Polymers based on aliphatic diols derived from bio-sources are of great interest in the plastics industry for the preparation of bio-derived products. Such products may show noticeable advantages compared to their oil-based counterpart such as biodegradability, biocompatibility and a low net environmental impact. The present paper discloses the synthesis and basic characterization of a new class of isosorbide-containing polyester carbonates.
Jennifer Lynch, Thomas Nosker, Arya Tewatia, May 2014
Lignocellulosic fiber-reinforced thermoplastic composites offer many property and environmental benefits. The major issue to overcome is moisture absorption due to the hydrophilic nature of the lignocellulosic component. The aim of this work is to combine hydrophobic natural fibers (NF) and a thermoplastic to produce a novel wood polymer composite that offers moisture resistance, dimensional stability, and resistance to microbial attack. Hydrophobic NFs are combined with polytrimethylene terephthalate using a novel, injection molding method and the flexural, tensile, and impact resistance mechanical properties presented.
Jasmine Rosen Kligvasser, Ran Y. Suckeveriene, Roza Tchoudakov, Moshe Narkis, May 2014
Antifog (AF) agents are chemicals that prevent the condensation of water as small droplets on hydrophobic surfaces which resemble fog. Antifogs function by minimizing the water surface energy, thus resulting in a continuous film of water rather than single droplets. Inside a greenhouse, the temperature and humidity are usually higher than the outside temperature and fog will thus appear on the inner surface of the PE film. In the present work, a new method of controlled migration of AF is described, by grafting AF molecules to the surface of sub-micron inorganic particles. Glycerides and fatty acids are used as AF. During the grafting reaction two fractions are formed: attached AF fraction to the inorganic particles’ surface, a fraction which cannot be detached by extraction, and an unreacted, thus unattached AF fraction. Aging tests, developed in the present work, have shown a significant decrease of the AF migration rate.
This paper discusses failures in a residential fire sprinkler system using CPVC pipe surrounded by sprayed urethane foam insulation. The pipe had multiple circumferential cracks. The external surface had a brown coloration in cracked areas. Chemical analysis showed presence of chemicals in the polymer consistent with components that may have been present in the foam. These chemicals had solubility parameters and boiling temperatures consistent with causation of Environmental Stress Cracking of CPVC. Accelerated exposure of strained CPVC pipe sections to three of these chemicals showed rapid formation of suspected environmental stress cracks.
Vahid Heshmati, Musa R. Kamal, Basil D. Favis, May 2014
Nano crystalline cellulose (NCC) / PLA/bio-Polyamide11 (PA11) blends were prepared at different compositions by melt blending. A homogenous nano-scale NCC dispersion in PLA/PA11 blends was achieved. Both Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM) reveal the localization of NCCs in both phases and at the interface. Also, the images show no significant changes in the morphology of the PLA/PA11 blends for up to 2 wt% NCC.
Supaphorn Thumsorn, Sommai Pivsa-Art, Kazushi Yamada, Ken Miyata, Hiroyuki Hamada, May 2014
Biodegradable polymer film was prepared from poly(lactic acid)/thermoplastic starch (PLA/TPS) blend by cast film process at 0, 5 and 10 wt% of TPS. The PLA and PLA/TPS blend films were heat sealed at heat sealed temperature of 90 and 100 °C. The heat seal time was varied from 0.5 to 2.0 s with a pressure of 0.2 MPa. The effect of heat sealed conditions on heat seal properties of PLA and PLA/TPS films was investigated. Heat sealed strength of PLA/TPS blend films decreased when increasing the heat sealed times. PLA/TPS heat sealed films exhibited greater crystallinity than the PLA heat sealed film, which characterized by crystallization kinetic study.
Michael Davis, John P. Droske, Wei Zheng, May 2014
A series of green" thermosetting resins oligomers of bis(hydroxyalkylene)-2-mercaptosuccinate has been reported recently [12]. Curing in these thermosetting resins results from crosslinking via pendant thiol groups. As part of an effort to realize and assess the potential of these resins as sustainable materialsthe curing process was investigated using differential scanning calorimetry (DSC) and rheology. The progression of physical and mechanical properties such as the glass transition temperature (Tg) and the shear moduluswas monitored as a function of time and temperature. Tg of the resin was found to increase with curing and the averaged Tg of the fully cured resin was found to be 72.6 K ± 1.2 K higher than uncured resin. The increase in Tg corresponded with the change in rheological properties. The shear modulus obtained for fully cured samples reached a high modulus of 6.5 × 106 Pa at 200 °C. Additionallythe gel point was measured from the crossover of the storage and loss moduli. Based on the gel points the apparent activation energy of curing also was determined."
84 countries and 60k+ stakeholders strong, SPE
unites
plastics professionals worldwide – helping them succeed and strengthening their skills
through
networking, events, training, and knowledge sharing.
No matter where you work in the plastics industry
value
chain-whether you're a scientist, engineer, technical personnel or a senior executive-nor
what your
background is, education, gender, culture or age-we are here to serve you.
Our members needs are our passion. We work hard so
that we
can ensure that everyone has the tools necessary to meet her or his personal & professional
goals.
Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:
Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.
Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.