SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library
Keyword/Author:
After Date: (mm/dd/yy)  
 
Sort By:   Date Added  ▲  |  Publication Date  ▲  |  Title  ▲  |  Author  ▲
= Members Only
Sustainability
Various topics related to sustainability in plastics, including bio-related, environmental issues, green, recycling, renewal, re-use and sustainability.
Lightweight Bio-Composites with Acrodur® Resin Technology
Henning Karbstein, September 2013
The technical performance and sustainability value of natural fiber/thermoset acrylic composites has been demonstrated over the past few years. Recent development updates and further value-chain improvements in North America support further cost efficiency towards economical competitiveness. Local North American sources of natural fibers disconnected from Asian sources are now being established and offer greater reliability and affordability for the industry. New inline processing equipment to coat and dry nonwoven natural fiber or glass mat also has entered the market allowing for improved energy-efficiency and small production footprint plus higher quality process stability as well as other opportunities. The combination of these advances enables sustainable bio-composites that offer tremendous lightweight potential at competitive costs today.
Lightweight Sustainable Substrate Materials for Automotive Interiors
Matt Barr, September 2013
This presentation provides a global overview of natural fiber composite materials and processes highlighting current research as well as the next generation of lightweight automotive interior substrates. It discusses both pros and cons of various lightweight sustainable substrate materials (including the wide family of resinmatrixed composites with an assortment of fibrous additives ranging from wood to flax) taking into account material suitability for automotive interior substrate applications. The goal of this talk is to encourage discussion of uses and benefits of natural wood composites to reduce weight and increase product sustainability.
Polyurethane Environment Friendly Sandwich Structure Load Floor
Allan James, September 2013
Dow Automotive and Magna International have developed a polyurethane-based system to enable a novel sandwich structure that includes extensive use of environment friendly materials. This system addresses two significant challenges in the automotive industry: weight reduction and incorporation of renewable materials. An ideal application for this technology is the load floor an interior component located in the rear of the vehicle immediately above the floor pan. This paper will review the performance requirements for a load floor the alternative materials and the development of a novel sandwich structure solution which gives the best mass to load performance with the capability to tailor shape requirements and includes the use of environment friendly materials.
Production of a Class 8 Truck Trailer Bed Using c-PBT Thermoplastic Prepreg and Vacuum Bag Processing
James Mihalich, September 2013
An ambitious multi-year program was recently undertaken in Europe to improve the sustainability of composites used in transportation – particularly with respect to the ability to develop thick parts with large surface areas economically. The program worked with a novel highly reinforced thermoplastic composite based on cyclic oligomers of polybutylene terephthalate (cPBT) which were used to produce thermoplastic prepregs that were then evaluated in vacuum bag processes while liquid cPBT / fiberglass systems were assessed in vacuum infusion and vacuum-assisted resin-transfer molding – all forming processes traditionally used for composites with thermoset (not thermoplastic) matrices. Once the best material / process combination for the program was determined and small-scale testing confirmed the finished composite provided sufficient mechanical performance the prepreg / vacuum bag process was selected to mold one of the largest thermoplastic parts ever produced: a 3-piece structural floor for a flat-bed trailer for a Class 8 truck which is the focus of this paper.
Progressive Forming of Thermoplastic Laminates
Uday Vaidya, September 2013
Thermoplastic composite laminates can be post-manufactured by progressively thermoforming them to generate contoured parts from prior flat panels. This process is attractive for expanding the potential usage of composite materials in next generation transportation infrastructure marine and military sectors for part replacement and structural applications. Thermoforming has proven to be an efficient means for creating parts of complex geometries. Accurately predicting material properties and temperatures prior to forming is of utmost importance to minimize waste and reduce cost for mass-production applications. This paper presents a finiteelement modeling approach to establish the manufacturing parameters for locally formed thermoplastic composite plates.
Protein Polymer with Cellulosic Filler Compatible in Various Thermoplastic and Thermoset Systems
Tim Bearnes, Raymond Schenk, September 2013
Distillers grain a by-product of the ethanol process has been used to produce thermoset and thermoplastic polymers that can replace a portion of and/or enhance traditional petroleum-based resins in various plastics manufacturing processes. The process results in unique characteristics and allows inclusions into finished plastics products at rates of up to 40% final bio content. The pellets produced are consistent with the standard feedstock materials used by plastic manufacturers in thermoplastics and currently are being tested with polypropylene (PP) and polyethylene (PE) and the bio-based polyhydroxyalkanoate (PHA) and polylactic acid (PLA) resins in some applications. Trials are underway in injection molding rotary molding and extrusion molding. Test results have indicated improvements in some properties of finished goods with good processing characteristics when run at temperatures below 193C. Further testing in thermoset bulk-molding compound (BMC) has resulted in lower specific gravity while retaining physical properties and good surface finish.
Recent Case Studies of Engineering Thermosets for Under-the-Hood Applications (Part A: Overview)
Cedric Ball, September 2013
Automotive engineers are looking for options to reduce weight and increase engine efficiency to comply with new CO2 emission and fuel economy regulations. As a consequence under-the-hood operating temperatures continue to increase. Engineering thermosets are an effective lightweighting alternative to heavier conventional steel and aluminum die-cast products. They combine outstanding temperature stability long-term mechanical strength dimensional stability and high chemical resistance. This presentation focuses on 2 recent automotive underhood applications where phenolic-based engineering thermosets successfully replaced traditional metals. First a thermoset water pump housing was shown to outperform cast aluminum in dimensional stability while lowering overall weight; and a thermoset vacuum pump also originally designed in die-cast aluminum provided high mechanical strength and improved dimensional stability at reduced cost and weight. Finally various recycling methods for these thermoset materials are described.
Toughening PLA Composites with Natural Fibers and ENR
Abdul Shakoor, September 2013
Biocomposites are recent advancements used to develop cost-effective sustainable materials for numerous applications in response to the mounting needs to find substitutes for polymers based on fossil fuels. Polylactic acid (PLA) is an aliphatic and is the most promising in the bioplastics’ family although its use can be constrained by its poor mechanical properties lower thermal stability and processing difficulties. The objective of this research was to investigate and improve mechanical and thermal properties of PLA by developing PLA composites reinforced with hemp natural fibres results of which are discussed in this presentation.
Tough, biodegradable poly(L-lactic acid) polymer blends
Ahmed El-Hadi, September 2013
Blending poly(L-lactic acid) and polyhydroxybutyrate, with tributyl citrate as the plasticizer, increases molecular mobility and the rate of crystallization.
Wheat-gluten biocomposite films reinforced with rice husk
Mehmet Sarikanat, Seyederfanhossein Emadi, Yoldas Seki , Kutlay Sever, September 2013
Adding a chitosan-polyethylene glycol plasticizer and a rice-husk filler to wheat-gluten films improves tensile strength and modulus, hardness, and water resistance.
Transforming the resource base: new bioplastics
John R. Dorgan, October 2013
Poly(lactic acid) combined with nylon-11, a polymer from castor oil, creates a new family of 100 renewable plastic materials.
Biocomposites based on poly(lactic acid) and hydrotalcite
Luigi Botta, Roberto Scaffaro, October 2013
The benefit of adding a filler may be outweighed by matrix degradation.
Characterization of kaolin-filled polymer composites
Nivin Ahmed, Azza Ward, Magda Tawfik, November 2013
Addition of a treated kaolin filler improves the mechanical and electrical properties of polymer composites produced from unsaturated polyester derived from polyethylene terephthalate waste.
Chitosan/titanium oxide composite: a photocatalyst and bacteriocide
Yuvaraj Haldorai, December 2013
A chitosan/titanium oxide composite exhibited high photocatalytic activity against harmful dyes as well as antibacterial properties, and it was easier to recover from the environment than titanium oxide alone.
Biobased and biodegradable polylactide composites with waste cotton fibers
Ewa Piorkowska, January 2014
Blending polylactide with other polymers, fibers, and fillers leads to novel materials with modified properties.
Effect of nanofiller type on degradation of polylactic acid
Michael Niaounakis, Panayiotis Georgiopoulos, Evagelia Kontou, January 2014
Polylactic acid nanocomposites with montmorillonite and silica nanofillers showed different thermomechanical property alterations over a six-month aging period.
Poly(butylene succinate)/ halloysite nanotube nanocomposites
Yijun Zhang, Guangjian He, Jun Luo, Xianwu Cao, Wei Wu, January 2014
The strength and modulus of poly(butylene succinate) can be increased with the addition of halloysite nanotubes, without a significant loss of ductility.
Strengthening composites with waste rubber
Adel Ramezani Kakroodi, Denis Rodrigue, March 2014
Process optimization enables impact modification of polymer composites using surface-coated waste rubber particles.
Wood apple shell particulates reinforce epoxy composites
Raghavendra Gujjala, Samir Kumar Acharya, Shakuntala Ojha, March 2014
Adding biodegradable shell particulates to an epoxy resin matrix yields superior thermal stability and mechanical properties while lowering fabrication cost.
New life for aircraft waste composites
Raffaele Corvino, Mario Malinconico, Maria Emanuela Errico, Maurizio Avella, Pierfrancesco Cerruti, March 2014
Recyclable thermoplastic composite materials, made of waste from dismantled aircraft and polystyrene loose-fill packaging, are capable of handling high weight loads.


This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.




spe2018logov4.png
  Welcome Page

How to Reference Articles from the SPE Library:

Brief version (acceptable):
Author(s), SPE-ANTEC Tech. Papers, vol. no., page no. (year).
Proper version (preferred):
Author(s), “Title,” SPE-ANTEC Meeting in location: month, year, vol. no., page no.