SPE Library


The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 


Search SPE Library
    
    




Sort By:  Date Added   Publication Date   Title   Author

Applied Rheology

SPE Library content related to rheology
SYNTHESIS AND CHARACTERIZATION OF A NOVEL, HIGHLY BROMINATED, FLAME RETARDANT POLYMER
Samim Alam, Bret Chisholm, May 2011

A novel brominated polymer was synthesized from pentabromo-6-ethoxybenzene vinyl ether using cationic polymerization. The thermal and rheological properties of the polymer (i.e. PBrVE) were compared to the commercial brominated flame retardant, poly(pentabromobenzyl acrylate) (PBrBA). The glass transition temperature of PBrVE was determined to be 103 C which was 57 C lower than that of PBrBA. The higher molecular mobility of PBrVE resulted in lower melt viscosity in blends with PBT. Characterization of the PBT blends using transmission electron microscopy indicated higher compatibility between PBT and PBrVE as compared to PBT and PBrBA.

PROCESSING LINEAR POLYPROPYLENE-CLAY NANOCOMPOSITES WITH SILANE COUPLING AGENTS
Amit Chaudhary, Krishnamurthy Jayaraman, May 2011

Two different grades of organically modified montmorillonite were treated with several aminosilanes before compounding with a linear polypropylene (MFR=4) and a high molecular weight PP-g-MA in the same proportions in all cases. This treatment served to promote reactive coupling of the polymeric compatibilizer (PP-g-MA) to the nanolayer edges alone in some cases or to the nanolayer faces as well as edges in other cases. Edge coupling alone or coupling at the faces and edges give rise to different effects on the morphology and melt rheology ƒ??particularly strain hardening in extensional flow of the nanocomposites.

TRITICALE STARCH BASED BIOPLASTICS
Hingbo Li, Nathalie Legros, Christian Belanger, May 2011

Triticale is being developed and aimed as an industrial crop and biorefinery feedstock for the Canadian manufacturing industry within the CTBI networking. In this paper the potential of triticale starch for the TPS/polymer blend fabrication was explored in terms of the starch morphology, crystallization structure, and the TPS (thermoplastic starch) rheology properties. The possibility of using triticale to make 100% biobased blown film was investigated using a small lab-scale film blown line. Film thickness of 25 um was obtained successfully for the triticale starch based PLA/TPS blends.

PRELIMINARY RESULTS FOR INJECTION MOLDED SHORT GLASS FIBER THERMOPLASTIC COMPOSITES WITH A CIRCULAR FRONT
Syed Mazahir, Donald Baird, Peter Wapperom, Gregorio Garcia, May 2011

A two dimensional axisymmetric simulation for predicting the flow-induced orientation of glass fibers in injection molded composite parts is presented. The mass and momentum balance equations are discretized using Galerkin finite element method and the constitutive equation for fiber orientation is discretized using discontinuous Galerkin finite element method. Material parameters used in the model are determined using rheology and experimental fiber orientation is used for initial conditions. Simulation results are in close agreement with the trend seen in experimental data with still need for improving the simulation to capture the orientation in regions close to frontal flow and the walls.

COMPARISON OF CARBON NANOTUBES AND CARBON NANOFIBERS BASED NANOCOMPOSITES PREPARED WITH AID OF HIGH POWER ULTRASOUND
Rishi Kumar, Avraam Isayev, May 2011

The unique morphology and strong inter-tube attraction among CNTs and CNFs makes the dispersion of CNTs and CNFs a big challenge and hence limits their effective use. The comparison of reinforcement efficiency of CNFs and MWNTs in PEI was studied. Ultrasound assisted single and twin screw extruder was used to prepare PEI/CNFs and PEI/MWNTs nanocomposites respectively. The effect of ultrasound on electrical, rheological, morphological and mechanical properties of polyetherimide filled with 1-10wt% of MWNTs and 2-20wt% of CNFs was studied. Ultrasonic treatment caused a reduction in electrical percolation threshold value with a permanent increase of viscosity of treated samples.

INTERRELATION BETWEEN MELT PROCESSING CONDITIONS, FORMULATION AND PROPERTIES OF POLYPROPYLENE / SHORT FLAX AND HEMP FIBER COMPOSITES
Mihaela Mihai, Johanne Denault, Christian Belanger, May 2011

This work investigates the effect of extrusion parameters and formulation on the properties of polypropylene / short flax fiber composites. The parameters that were varied during the twin-screw extrusion process were screw configuration, screw rate, extrusion temperature and flow rate. The effect of the location of the feeding zone of flax fibers is also considered. Concerning the composite formulation, the effect of flax content, presence of coupling agent and of a reactive additive on composite properties are analyzed. The materials were characterized in terms of morphological characteristics, rheological, thermal and mechanical properties.

MORPHOLOGY AND RHEOLOGICAL PROPERTIES OF POLY (BUTYLENE ADIPATE-CO-TEREPHTHALATE) AND POLY (LACTIC ACID)/CLAY COMPOSITES
Mahin Shahlari, Sunggyu Lee, May 2011

This work studied Poly(butylene adipate-co-terephthalate) (PBAT) and polylactide (PLA) bends compounded with organically modified silicate layers. Compounds of 80% PBAT, 20% PLA and 3% organically modified silicate layers showed significantly improved modulus and enhanced thermomechanical performance compared to PBAT. Rheological analyses showed solid-like behavior for the melt, indicating formation of a network structure of the particles in the blend although the clay platelets were partially dispersed in PBAT matrix and a large portion of the platelets was located at the interface based on the electron microscopy analysis. Also the addition of organoclay reduced the dispersed phase domain size significantly.

RHEOLOGICAL CHARACTERIZATION OF POLY(ETHYLENE TEREPHTHALATE) RESINS USED IN THE BOTTLING INDUSTRY
Tzu-chia Tseng, Jay Hanan, May 2011

Poly(ethylene terephthalate) (PET) is extensively used as the packaging material for bottled beverages. Qualifying PET properties from different suppliers is an important way to ensure the performance of manufactured bottles. In this study, we used dynamic melt rheology to determine the zero shear viscosity and the molecular weight of the polymer. This rheological characterization aids in understanding the properties of each resin in the molten phase during processing. Finally, the performance of PET bottles made from different resins was evaluated through the top load capacity.

REVERSE TEMPERATURE PROFILE RHEOLOGY STUDY OF PHB COPOLYMER WITHIN AN INJECTION MOLDING MACHINE
Bhavin Shah, Robert Whitehouse, Jinkoo Lee, Steve McCarthy, May 2011

Rheology measurements are normally conducted using a capillary rheometer. It utilizes a flat temperature profile and is significantly different from actual recommended processing condition. This work studied the rheological behavior of PHB Copolymer within an injection molding machine. Viscosity measurements were made using an in-line capillary rheometer nozzle on a molding machine at shear rates ranging from 100 s-1 to 20000 s-1. The results showed that the viscosity of the material reduces significantly when compared to conventional capillary rheometer. These changes can be attributed to processing conditions such as reverse temperature profile, residence time and shear due to screw plasticization.

IONOMER MODIFIED ASPHALT
Ying Shi, May 2011

The structure and properties of ionomer modified asphalt were investigated. The thermal properties, morphology and rheology of four concentrations of a Pen grade 64-22 asphalt and the zinc salt of a poly (ethylene-co-methacrylic acid) were studied. After establishing the linear viscoelastic range of response through strain sweep, frequency sweep at a temperature range of 30-80C were conducted to study the dynamic mechanic properties of the modified blends. The ionomer modified and base asphalt samples were subjected to simulated real life conditions such as long and short aging, high and low service temperatures. Better performances were achieved by the modification

IONOMER MODIFIED ASPHALTS
Ying Shi, May 2011

The structure and properties of ionomer modified asphalt were investigated. The thermal properties, morphology and rheology of four concentrations of a Pen grade 64-22 asphalt and the zinc salt of a poly (ethylene-co-methacrylic acid) were studied. After establishing the linear viscoelastic range of response through strain sweep, frequency sweep at a temperature range of 30-80‹?øC were conducted to study the dynamic mechanic properties of the modified blends. The ionomer modified and base asphalt samples were subjected to simulated real life conditions such as long and short aging, high and low service temperatures. Better performances were achieved by the modification.

RHEOLOGICAL MORPHOLOGICAL RELATIONSHIP IN IMMISCIBLE AND REACTIVELY COMPATIBILIZED SAN/EPDM BLENDS
Mona Taheri, Jalil Morshedian, Hossein Ali Khonakdar, May 2011

In immiscible blend of SAN/EPDM a coarse morphology is formed. In reactive blends, formation of graft at the interface causes fine stable droplet morphology. Favis equation shows at 17 wt% of graft the size of EPDM would be minimum. The interfacial tension of the blends determined by Palierne and Choi-Schowalter models shows minimum value at 1 phr initiator. The droplet morphology is changed to composite in two step blending method. A higher apparent volume fraction of EPDM in the blend with composite morphology which has been also obtained by Kerner equation is an indication of the evolution of composite morphology.

Cost-effective, less polluting UV-absorbent film
Chifei Wu, Qiuying Li, Yue Zhang, Qilin Zhou, April 2011

Modifying carbon black with a commercial UV absorber and incorporating it into polyester film improves the film's ability to absorb radiation of wavelength 300-400nm.

High-strain-rate behavior of polymer matrix nanocomposites
Zainal Arifin Ahmad, Hazizan Md. Akil , Mohd Firdaus Omar, April 2011

Static and dynamic mechanical properties of polymer composites are experimentally measured.

An improved approach to simulating resin-transfer molding
Mohammed Hattabi, Aouatif Saad , Adil Echchelh, Mohammed El Ganaoui, March 2011

Implementation of the conventional control-volume/finite-element method and a modified conjugate-gradient algorithm can efficiently optimize rheological simulations.

Thermally insensitive hydrosoluble associative polymers
Fatima Perez-Rodriguez, Ramon Diaz de Leon, Enrique Jimenez-Regalado, February 2011

The rheological properties of a new type of water-soluble compound do not depend on temperature.

Thermal stresses and birefringence in quenched cylinders
Antonio J. Carillo, Avraam I. Isayev, February 2011

During quenching from melt to solid state, the contribution of thermal stresses to birefringence is minimal for polystyrenes and significant for polycarbonates.

Processing effects on nanoclay/ polymer-blend morphology and rheology
Jacques Huitric, Michel Moan, Thierry Aubry, Julien Ville, Pascal Mederic, February 2011

Polyethylene/polyamide and polyamide/clay contact times critically impact clay-nanoparticle composition, polymer dispersed-phase morphology, and ternary-clay-blend rheological properties.

Improved mechanical and tribological properties of Boehmite-filled polymers
Tea Datashvili, Witold Brostow, Haley Hagg Lobland , Piotr Blaszczak, January 2011

Surface modification of ceramic oxide filler reduces polymer melt viscosity and friction while enhancing tensile modulus.

Influence of molecular weight on the properties of poly(ether ether ketone)
Richard J. Hoffman, Jeffrey A. Galloway, Mingjun Yuan , Sanjiv Bhatt, January 2011

Variations in molecular weight of poly(ether ether ketone) significantly alter its processing behavior, product properties, and performance.








spe2018logov4.png
  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net