SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library
After Date: (mm/dd/yy)  
Sort By:   Date Added  ▼  |  Publication Date  ▼  |  Title  ▼  |  Author  ▼
= Members Only
Conference Proceedings
Mechanical and Morphological Properties of Microcellular Polypropylene Single-Polymer-Composites Prepared by Microcellular Injection Molding
Dongjie Chen, Jian Wang, Lu Yang, Sui Wang, May 2015
Recyclable microcellular polypropylene (PP) single-polymer composites (SPCs) with uniaxial fibers were successfully produced by microcellular injection-molding process. Nitrogen in the supercritical state was used as the physical blowing agent in the microcellular injection molding experiments. The tensile properties of the microcellular PP SPCs with uniaxial fibers were determined. The microcellular PP SPC prepared with an injection pressure of 40 MPa, a nozzle temperature of 205 øC, a holding time of 5 sec and a cooling time of 20 sec has the tensile strength of 23.70 MPa, 24.34% higher than that of the microcellular non-reinforced PP, 7.93 % lower than that of the solid PP. The weight of the microcellular PP SPC is 1.024 g, 11.50% lower than that of the solid PP, 2.09% higher than that of the microcellular non-reinforced PP. The morphological properties were also observed using scanning electron microscope (SEM).
Modeling and Simulation of Internal Circulation Two-Platen Injection Molding Machine Based on AMESim
Lu Yang, Jiong Peng, Dongjie Chen, Jian Wang, May 2015
The internal circulation direct hydraulic two-platen clamping system opened a new era of the development of the injection molding machine. This paper established the hydraulic system models for the internal circulation clamping system by AMESim. Displacement of the moving platen, pressure in the mold-clamping cylinders and flow in the internal circulation valves were calculated. The simulation results showed that the system design was reasonable and reflected the real dynamic characteristics of hydraulic system. The modeling and simulation for the internal circulation two-platen injection molding machine laid the foundation for further studies.
A Study of Two Processing Induced Part Failures
Jose M. Perez, May 2015
Of the four pillars required for the successful development of a plastic part; material selection, part design, processing, and service environment, processing is often assumed to be the most controllable. Even when the service environment has been properly defined, the best design principles implemented, and the appropriate material selected, seemingly insignificant changes in processing can grossly and adversely affect an otherwise well developed product. This paper will explore two case studies where the failure of the parts can be traced directly back to changes in the processing parameters and how these changes ultimately predisposed them to premature failure.
Foamcore Blow Molded Structural Components for Transportation Applications
Steven R. Sopher, May 2015
With emphasis on weight reduction throughout the transportation industry, there is a renewed effort to remove as much mass as possible to improve vehicle performance.

JSP has developed and optimized a blow molding process that combines traditional blow molding with an injection molded particle foam core. This process; called Foamcore, utilizes traditional blow molding equipment combined with a particle foam injection unit to produce a composite blow molded part with a solid foam core.

JSP?s Foamcore technology allows for simpler designs, higher strength to weight ratios, lower part weight, all while using exiting tooling (with minor modifications). Multiple polymers can also be used including Polypropylene, Polyethylene, Polystyrene, etc. for both skin and core materials.

This paper will describe recent advancements of this technology, and how they allow for improved mechanical properties to be realized in the area of transportation applications for structural and semi-structural components. Other features discussed include improvements in thermal insulation, sound abatement, as well as recyclability and End-Of-Life requirements.
Developments in the Production of High Surface Area Fibers and Nonwovens for Filtration
Behnam Pourdeyhimi, May 2015
Sub-micron fibers are expected to bring value to applications where properties such as sound and temperature insulation, fluid holding capacity, softness, barrier property enhancement, high electrochemical activities (electrodes in fuel cells and Li-ion batteries) and filtration performance are needed. This presentation will focus on the various processes used for forming webs made up of sub-micron fibers and will review the latest technologies in Electrospinning, Meltblowing, Melt Fracture, Solution blowing, Bicomponent fiber formation, and Supersoninc nozzles.
Catalytic Technology and Controlled Chemical Release for Post-Harvest Preservation of Fruits and Vegetables
Vinod Malshe, Rajen Raje, Leena Raje, Rupali Hande, May 2015
Roughly 1/3rd (1.3 billion tonnes) of the food produced in the world for human consumption gets wasted every year. Fruits and vegetables have highest wastage rates of almost 40-50%. This is partly due to ethylene action and improper storage and handling. Ethylene, a catalyst generated by climacteric fresh produce is responsible for their ripening. Ripened fruits have more risk of microbial spoilage due to increased sugar %. Improper handling, storage, lack of cold chain etc in post-harvest conditions further increases the loss. In the past, we have reported ?niche? technologies for fruit preservation, such as chemical agents responsible for adsorption and destruction of ethylene. In continuation, now we are introducing some more ?unique? technologies such as using a) Catalytic converters (of ethylene to ethylene oxide), b) Ethylene adsorbers and c) Halogen releasers. We believe that these simple and cost-effective techniques will be the trendsetters to reduce horticultural wastage considerably and in the end benefit the farmer, the retailer and also the consumer. Efficacy of these products was tested by using them as novel additives in flexible packaging, punnets etc. which are commercially used for storage and transport of various fruits and vegetables in which they were effective in reducing ethylene from the storage area. We also experimented use of these products by incorporating them in a plastic film and all through we could acquire considerable shelf life extension of both climacteric and non-climacteric fruits and vegetables. We firmly believe by using such value-added packaging post harvest horticultural losses will be considerably reduced and it can result in a service to mankind.
Extrusion Performance Fluids - Crucial in Maintaining Water-Cooled Extruder Efficiencies
Peter E. Greenlimb, May 2015
Many manufacturers of water-cooled extrusion equipment typically recommend that either distilled water or properly-treated water [1,2] be used to control barrel zone heater/cooler temperatures. While many industrial water treatment professionals treat and maintain cooling towers, chill rolls and other Utility Water Systems in extrusion plants, few, if any, have attempted to solve the corrosion, fouling and mineral deposition issues typically experienced in extruder barrel cooling systems (Process Water Systems).

This paper summarizes our experiences over the past fourteen years developing and successfully applying Extrusion Performance Fluids (EPF) as safe and effective coolants in water-cooled extrusion applications. Key documented case studies and simple extrusion maintenance procedures will be discussed which form the basis for a pending US Patent [3] on EPF and its associated technologies.
Long Chain Branching of Polypropylene via UV Radiation: Effect of Coagent and Other Radiation Variables on Continuous Modification
Yasaman Amintowlieh, Costas Tzoganakis, Alexander Penlidis, May 2015
Continuous photomodification of polypropylene (PP) has been conducted in order to scale up a previously developed batch process for commercialization purposes. Utilizing this process PP rheological properties were modified by incorporation of long chain branches (LCBs).
Trimethylolpropane triacrylate (TMPTA) was employed as a coagent along with benzophenone (BPH), which was the photoinitiator. The effects of TMPTA presence, BPH concentration, and radiation duration on viscoelastic properties and gel content were studied. Gel permeation chromatography (GPC) was used to confirm formation of LCBs in the photomodified PP.
A Study of Glass Spheres Incorporated into Extruded Polyethylene Films
Nicholas Iorio, Christopher Thellen, Sarah L. Cheney, Lauri Kline, David Graham, Jo Ann Ratto Ross, May 2015
Hollow glass microspheres were investigated as an additive in extruded low density polyethylene films. Advantages of this technology may include reductions in plastic material costs, thermal conductivity, packaging weight, density and processing costs. Monolayer films were processed on a blown film extrusion line and characterized for morphology, thermal and mechanical properties. Optical microscopy showed that the microspheres were intact and density was lower than the neat low density polyethylene films.
Marketing and Product Development Strategies in the Chemical Industry Using Dark Data & Data Sciences
Bala Ambravan, Gunaranjan Pemmaraju, May 2015
The GDP contribution from the Industrial sectors is ~$25T, of which the Chemicals and Plastics Industry, is ~$4T in revenues. This traditionally product-centric industry is transforming into a market-facing growthmachine. While chemistry and product innovation will always be pillars of the industry's strength, prioritizationof the development efforts are shifting heavily towards marketing strategies and identification of attractive segments. However, Marketing and Segmentation strategies at chemical companies currently rely on the useof traditional methods such as expertise, relationships, customer feedback, sales calls, static market reports, strategy consultants and patent searches. On the other hand, the use of data, advanced data sciences andautomated intelligence is prevalent in the consumermarketingworld. This paper intends to open up and inspire possibilities in fully utilizing these advances in data sciences from the consumer space, and applying themto the industrial space, in tandem with the extraction of relevant dark data. Deep industry expertise can beaugmented by data sciences & big data analytics, mobile and social platforms and technology, to form a potent mix, which will catalyze this transformation.
Material Selection For Cost Effective Manufacturing: A Methodology for Technical Evaluation
Eric R. Larson, May 2014
This paper presents a methodology for the selection of thermoplastic materials in order to achieve the most cost effective manufacturing solution. Unlike conventional materials selection methods—which rely almost exclusively on quantitative performance data—this method relies on a comprehensive evaluation of cost, including material costs, processing costs, and the cost of secondary operations.
Barrier Packaging for Dry Food
Jill Martin, Mark Heard, Lamy Chopin, May 2014
Dry food packaging typically contains a combination of polyethylene resins to provide toughness and barrier with a sealant layer to provide a specific shelf life. Development of the materials and resulting structures requires fundamental knowledge of structure / property relationships as well as the ability to tailor properties for in-use performance. Dow has been developing both resins and novel testing methodology to help expedite the development process, focusing on the consumer needs and benefits.
Peelable - Resealable Films: FTIR Characterisation and Peel Strength
Richard J. Silverwood, Hesam Tabatabei, Abdellah Ajji, May 2014
In the last decade, smart packaging has been an emerging field, which focuses on improving safety, ease of use and sustainability of food products. In this paper, enhancement in the ease of use is sought through the tailoring of a novel peelable-resealable structure. Therefore, multiple pressure sensitive adhesive (PSA) resins were first screened through by measurement of their peel strength. In light of the Fourier transform infrared spectrums, key properties of the peelable-resealable structure are discussed and material properties correlated to peel strength behavior.
Preparation and Rheological Properties of Epoxy-Based Liquids with Adjustable Viscosities
Yifeng Hong, Donggang Yao, May 2014
Epoxy-based liquids with adjustable viscosities were prepared by curing a two-component resin mixture at variable mixing ratios and their rheological properties were then characterized using a parallel plate rheometer. The viscosity was found to decrease as the portion of amine compound component decreased. Moreover, the rheological properties of such liquids were found to be highly thermally sensitive. At last, the authors proposed a possible mechanism to explain the viscosity change at different resin mixing ratios.
The Effect of Multilayer Rheology on the Flow Distribution in a Coathanger Style Die
Joseph Dooley, Hyunwoo Kim, Patrick C. Lee, Robert Wrisley, May 2014
Multilayer coextrusion is a process in which two or more polymers are extruded and joined together in a feedblock or die to form a single structure with multiple layers. This paper will discuss the effect of experimentally measured multilayer rheology on the flow distribution in a coathanger style die.
Measurement of Transmittance and Reflectance Spectra of Edge-Lit 2-D Polymeric Light Guides
Moris Amon, May 2014
A commercially emerging type of lighting technology utilizing two-dimensional edge-lit polymeric light guide panels is described. Potential polymer-related engineering problems associated with these light fixtures are identified. One of these problems is the possibility of a color differences between panel surface regions close to and far from the light source. The theory and practice of a spectrophotometric method that can be used to assist material selection to solve this problem are described. Illustrative results are shown.
Continuous Devulcanization of Scrap EPDM Rubber with Supercritical CO2: Effect of Process Parameters on Devulcanized Rubber Properties
Mohammad Meysami, Prashant Mutyala, Shuihan Zhu, Costas Tzoganakis, May 2014
Scrap EPDM rubber crumb was continuously devulcanized using supercritical CO2 in an industrial-scale twin screw extruder. A reasonably high throughput extrusion process has been developed and the effect of processing conditions has been studied. A central composite design with two factors was used to study the effects of screw speed and feed rate on the sol and gel fractions, degree of devulcanization, and Mooney viscosity of devulcanized rubber.
Control of Heat Conduction Processes for the Improvement of Part Properties in the Two-Stage GITBlow Process
Elmar Moritzer, Stefan Seidel, May 2014
The GITBlow process, a combination of gas-assisted injection molding (“GIT”) and blow molding (“Blow”), allows the production of parts with complex functional geometries and thin-walled hollow spaces directly inside the mold. Part properties can be controlled by selective construction of characteristic part elements and modern methods for cooling control in the mold. Small variations of part geometry or of mold temperatures already show a positive influence on the resulting wall thickness distribution.
Foam Extrusion with Physical Blowing Agents – Engineering Approach
Kun S. Hyun, Myung-Ho Kim, Kyoo Ik Noh, Jeff A. Myers, May 2014
This paper introduces a new Engineering approach to improve and develop the manufacturing process of XPS Polystyrene form. The success in this process will trickle down to other foam processes to improve the productivity and energy savings.
Reliable Hot Tack Testing of Polyolefin Films
Dan Falla, Michael Li, May 2014
Measuring the strength of a seal while it is still in the semi-molten state is important in determining if a film is suitable to withstand high loads at high packaging speeds. Without high hot tack strength, the contents of the package may break through the seal during the filling process. In this report, we will utilize Six Sigma methodology to: compare two different separation force hot tack testing machines, identify key variables in testing, and develop a set of standard testing conditions.

This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.

  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net