SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library
After Date: (mm/dd/yy)  
Sort By:   Date Added  ▼  |  Publication Date  ▼  |  Title  ▼  |  Author  ▼
= Members Only
Conference Proceedings
Eco-friendly Bio-based Adhesive Tapes made from Biomass Materials
Brett Herrick, Tetsuo Inoue, Shigeki Ishiguro, Satomi Yoshie, Akiko Tanaka, Hiroki Senda, Hitoshi Takahira, May 2013
There are some bio-based plastic films however some properties of the films should be modified to use as adhesive tape film and adhesive compound materials should be designed. We improved film properties by adjusting the sheeting process. Regarding the film, it was confirmed that poly lactic acid (PLA) film, which has good heat resistance and tear strength, was obtained by using the calendar sheeting process. On the other side, low glass transition temperature materials and crosslinking materials were selected and formulated for adhesive polymers. Developed bio-based adhesive tape was evaluated and compared to conventional acrylic adhesive tape, and comparable properties were obtained. In addition, in the case of surface protection tape, it indicated enhanced properties. We can introduce Eco-friendly Bio-based Adhesive Tape made from biomass materials.
Review of Titanium Dioxide Ability to Scatter Light
Philipp Niedenzu, Jamie Ginn, Scott Granger, May 2013
ne of the most popular pigments used for plastic film applications is titanium dioxide, TiO2. Titania-based pigments are popular because of several desirable properties. For example, TiO2 is preferred in plastics applications because it is non-toxic and a relatively inert material. In addition, TiO2 does not migrate in a polymer matrix and generally does not require large shear forces to disperse it into a polymer melt when properly treated. TiO2 morphology can be adjusted so as to attenuate different wavelengths of light for plastic end uses. This attenuation is often referred to as “opacity” within the TiO2 industry. This paper describes the relationship of opacity as a function of titanium dioxide concentration, the thickness of the plastic matrix and the opacity performance.
Improved Impact-Modified Polyoxymethylene Co-Polymers for use in Small Off-Road Engine (SORE) Gas Tank Applications
Lowell Larson, George Zollos, May 2013
Ticona has developed a new family of impact-modified polyoxymethylene (POM) co-polymers that demonstrate a combination of improved permeation resistance, cold temperature impact strength, and melt strength that make them suitable for use in the small off-road engine (SORE) gas tank sector. The unique properties of the new products have been achieved through the modification of the polymer backbone, along with the use of a specific coupling technology. The new grades provide a monolayer tank solution with enhanced permeation resistance and impact strength for a variety of injection molding and blow molding small off road fuel tank applications.
Controlled Rheology Polypropylenes for Processes and Applications Requiring High Melt Strength
Mike Starsinic, Jessica Fischer, May 2013
Polypropylene (PP)-based materials find limited use in applications requiring high melt strength, but chemical branching overcomes this deficiency. This work demonstrates that combining branching and controlled rheology (CR) technologies results in PP-based resins with unique combinations of rheological and material properties. PP resins ranging from 1-12 MFR and exhibiting improved melt strength at low stress combined with viscosity responses comparable to CR PP under high stress will be presented. The ability to control PP melt strength at constant MFR while maintaining high stress viscosity comparable to PP is presented. HMS-PP with PP homopolymer tensile properties and PP random copolymer flexural properties is demonstrated.
Effect of Hot Air on Surface and Mechanical Properties of EPP Products Molded in Steam Chest Molding Machine
Nemat Hossieny, Aboutaleb Ameli, Aboutaleb Ameli, May 2013
In a steam-chest molding machine, the processing temperature and its variation across the mold is strongly affected by the steam pressure. In order to fundamentally resolve this problem and reduce the sensitivity of the temperature to the pressure variation inside the mold, this work proposes the addition of hot air to steam. The hot air was supplied into the steam line using annular port to create good mixture of steam and hot air prior to their introduction into the mold entrance. The effects of hot air flow rate, pressure and temperature were investigated and the surface roughness and mechanical properties of the molded products were characterized. The results showed that the introduction of hot air at the highest available flow rate of 120 liters/min decreased the total heating time by about 32 % and also resulted in a decrease of 12°C in the processing temperature at the surface of the molded part compared to parts molded with pure steam. The surface roughness of expanded polypropylene (EPP) molded parts with hot air mixed with steam reduced by 50%. The tensile property results showed that the difference in strength across the sample thickness was below 4 % when higher hot air flow rate was employed. The results of this work reveal the potential application of hot air in the steam-chest molding process to produce EPP bead products with improved surface quality, enhanced mechanical properties and shortened cycle time resulting in reduced operating cost.
Methodology for the Determination of the Biaxial Measurements of Plastic Materials in a Universal Testing Machine
Rosa A. Morales, Maria V. Candal Pazos, May 2013
The objective of this work was to design an experimental test for monitoring the plug force applied on a polymer sheet during the thermoforming process. The design consists in adapting a temperature controlled chamber to an universal testing machine in order to simulate the sheet heating and, to register the sheet strain deformation by a plug penetrating at a controlled rate. It was observed that a proper selection of the sheet heating system affects the penetration force during biaxial measurements as well as the sheet thickness distribution.
Vandar® High Impact Strength Polyester for Sporting Goods
Mukul Kaushik, Dirk Zierer, Jeanne Pilis, May 2013
andar® 2100 is an impact modified engineering thermoplastic resin developed to deliver consistent performance over a wide range of temperature and humidity conditions, primarily in injection molded articles. Vandar 2100 provides outstanding ductility and stiffness combined with the excellent chemical and environmental resistance properties of polyesters. The unreinforced and higher flexibility Vandar® grades fill the property gap between standard thermoplastic polyesters and elastomers. These plastics are easy to process including by injection molding and retain their impact strength down to -30 °C.
Applying Ant Colony System Algorithm in the Navigation Process for Mold Manufacturing Scheduling Optimization
Wen-Ren Jong, Po-jung Lai, Chien-Wen Lo, May 2013
Under the CAD software architecture, this study aims to develop navigation processes for mold manufacturing scheduling optimization. Mold manufacturing is a job-shop scheduling problem, with components processing sequence under limited conditions. Using the searching capabilities of the ant colony system (ACS), this study conducts optimization computation of the mold manufacturing scheduling problem, in order to shorten the mold manufacturing time and achieve the objectives of reducing production costs and enhancing competitiveness, while exploring mold manufacturing planning restrictions and manufacturing resources’ effectiveness. This study completes the algorithm steps and manufacturing process time estimation by operations on the navigation interface, and uses mold manufacturing scheduling to make optimized arrangements of finished components. The method can comply with the on-site manufacturing processes, improve scheduling prediction accuracy, and consistently and efficiently integrate the optimization scheduling system and mold manufacturing system. Visualized information of the scheduling results can be provided, thus allowing production management personnel to ensure smooth scheduling.
The Study for Tagushi Method on the Design of Core Plate and Support Pillar
Wen-Ren Jong, Yu-Wei Chen, Cheng-Hao Lin, May 2013
This study explored the structural characteristics of the entire mold in the plastic injection molding process, conducted experiments by changing the core plate thickness, number and position of support pillars, and measured the strain value of the core plate deformation during the injection molding process using a strain gauge. In addition, by combining CAE (Computer Aid Engineering) software, this study verified the experimental and simulated trends’ accuracy before adding the Taguchi method for the analysis of the simulated experimental design planning. We used CAE to analyze the deformation of core plate under different parameters and studied the core plate thickness optimization and support pillar effectiveness without damaging the plastic mold to further enhance the overall mold design.
Effect of Non-Covalent Chemical Modification on the Electrical Conductivity and Tensile Properties of Poly(methyl methacrylate)/Carbon Nanotube Composites
Ozcan Koysuren, Mustafa Karaman, Demet Ozyurt, May 2013
Non-covalent chemical modification by initiated chemical vapor deposition technique is applied to carbon nanotubes to reduce average agglomerate size of the nanoparticles in the polymer matrix and to improve surface interaction between the composite constituents. Carbon nanotube (CNT) surfaces are coated conformally with thin poly-glycidyl methacrylate (PGMA) polymer film and coated nanoparticles are incorporated in poly(methyl methacrylate) (PMMA) polymer matrix using solvent casting technique. Conformal PGMA coatings around individual nanotubes were identified by SEM analysis. TEM and optical microscopy analyses show homogeneous composite morphology for composites prepared by using PGMA coated nanotubes. FTIR and XPS analyses show the successful deposition of polymer with high retention of epoxide functionality. PGMA coating of carbon nanotubes exhibits improvement in electrical conductivity and tensile properties of PGMA-CNT/PMMA systems when compared with uncoated nanoparticles.
Electrospun polyvinyl borate/poly(methyl methacrylate) (PVB/PMMA) blend nanofibers
Hafize Nagehan Ucan Koysuren, Ozcan Koysuren, Havva Dinc, May 2013
The aim of this study was to prepare polyvinyl borate (PVB)/poly(methyl methacrylate) (PMMA) blend nanofibers by electrospinning process. Polyvinyl borate was synthesized by the condensation reaction of polyvinyl alcohol and boric acid. Since polyvinyl borate itself was not suitable for electrospinning process, polyvinyl borate was blended with poly(methyl methacrylate) prior to electrospinning process. A series of nanofibers with various polyvinyl borate concentrations in poly(methyl methacrylate) were prepared. PVB/PMMA blend nanofibers were characterized by fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). FTIR analyses showed that boron atoms were found to be integrated into the polymer network. According to SEM images, blending PMMA with PVB decreased the fiber diameter from 218 nm to 93 nm and resulted in appearing the bead structures along the fibers, which increased the surface roughness PVB/PMMA blend nanofiber mats. The water wetting property of PVB/PMMA blend nanofiber mats was influenced by the surface roughness. The contact angle increased with increasing the PVB content of PVB/PMMA blend nanofibers, enhancing the surface roughness. This study also aimed to assess the thermal behavior of PVB/PMMA blends using the thermogravimetric analysis (TGA). The blend composition with the highest polyvinyl borate content was found to be suitable for thermally stable nanofiber formation according to the TGA results.
Micro Injection Molding of Polymeric Substrates for Optimization of Stem Cell Development
John W. Rodgers, Meghan E. Casey, Sabrina S. Jedlicka, John P. Coulter, May 2013
A novel molding assembly was fabricated which offers an effective way to hold silicon tooling during injection molding. Processing parameters thought to be critical to the micro injection molding process were studied through the measurement of replication quality (RQ). To measure such effects, low density polyethylene (LDPE) plates containing microtopography were micro injection molded. RQ was most enhanced by higher mold temperatures and injection velocities, with mold temperature being the most influential parameter. Initial cell culture studies revealed that micro-patterned LDPE altered human mesenchymal stem cell (hMSC) morphology. Rapidly produced microfeatured synthetic polymer substrates have tremendous potential to revolutionize the cell culture industry.
Melt Compounding of Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) / Nanofibrillated Cellulose (NFC) Nanocomposites: Properties and Solubility of Carbon Dioxide
Yottha Srithep, Lih-Sheng Turng, Thomas Ellingham, Ronald Sabo, Craig Clemons, May 2013
Biodegradable nanocomposites were prepared using nanofibrillated cellulose (NFC) as the reinforcement and poly (3-hydroxybutyrate-co-3-hydroxyvalerate, PHBV) as the polymer matrix. PHBV powder was dispersed in water, mixed with an aqueous suspension of NFC fiber, and freeze dried. The resulting PHBV/15 wt% NFC was then used as a masterbatch in a subsequent melt compounding process to produce nanocomposites of various formulations. Its properties, such as mechanical properties, crystallization behavior and solubility of carbon dioxide (CO2), were evaluated. Scanning electron microscopy (SEM) images revealed that individual fibers with diameters less than 1 ?m were still clearly distinguishable even though some of the NFC agglomerated. Adding NFC increased the tensile modulus of the PHBV/NFC nanocomposites nearly twofold. Differential scanning calorimetry (DSC) analysis showed that the NFC served as a nucleating agent, promoting the early onset of crystallization. However, high NFC content also led to greater thermal degradation of the PHBV matrix. The solubility of CO2 in the PHBV/NFC nanocomposites decreased and the desorption diffusivity increased as more NFC was added.
Developoment of an Induction Heated Roll-To-Roll Lithography Process
Mary E. Moriarty, David O. Kazmer, Carol Barry, Joey Mead, Christopher Santeufemio, May 2013
Roll-to-roll (R2R) lithography is a continuous manufacturing process used to create patterns on a polymer substrate. Thermally curing of R2R embossed features is time consuming, and is commonly replaced with faster UV or chemical curing. A technique of induction heating the lithography stamp in a R2R process has been conceived for heating, forming and cooling along the perimeter of the roll. The patterned polymer surface needs no additional curing steps, which increases efficiency of the R2R lithography process. The results of initial investigation prove the feasibility of said conceptual process, and initial experiments confirm heating of the lithography roll by induction heating.
High Performance Processing Aid Designed for PVC Foam
Takenobu Sunagawa, Phil Cascais, May 2013
A suitable processing aid (high molecular weight acrylic copolymer) was designed for PVC foam and its remarkable foam-ability was confirmed. The molecular chain entanglement of high molecular weight acrylic copolymer with PVC can enhance the melt elasticity of the PVC melt yielding excellent foamed cell structure and low density. The molecular weight of the processing aid and its dispersion into the PVC melt was optimized to maximize efficiency. A synergistic combination of optimized processing aid, blowing agents, and inorganic fillers creates much lower density while retaining excellent mechanical properties.
Preparation and Measurement of a Water-borne Thermal-insulating Glass Coating for Construction
Yuan Lu, Tai-Liang Han, Zhi-Qi Cai, Xiufang Wen, Pihui Pi, Shouping Xu, Jiang Cheng, May 2013
A Water-borne transparent thermal insulation glass coating for construction was prepared with water- based polyurethane (PU) resin as matrix, functional filler and coating additives by the magnetic stirring. And then the coating obtained was painted on the surface of a piece of standard construction glass. Particle size distribution of the coating was tested and the results revealed that the particles in coating without agglomeration. The thermal insulation effects, optical performance and mechanical performance of coating film were also characterized and measured. In our case, the thermal-insulating effect was measured as better results with the content of nano-ATO as 10%, thermal difference as compared with blank in the same condition was more than 8.7°C. Furthermore, the transmittance of visible light through ATO/PU coating film in the visible light region (380-780nm) was kept more than 75% when the content of the nano-ATO was 10% and the thickness of film was under 50?m. The surface of coated glass is smooth, and the coating will have good prospect in market.
Material Properties and Their Influence on Molding Productivity and Effeciency of Medical Resins
Ian Menego, Mark Yeager, Pierre Moulinie, May 2013
The processability of three medical grade engineering resins were studied in terms of how their physical properties influenced their cycle times. We also compared the variability of molded parts and measured the energy necessary to process each resin. Our results suggest that the glass-transition temperature of the resins have very little effect on the cycle time, while the stiffness (i.e. modulus) of a material – particularly at the cooling temperature - exerts a dominant role. Higher energy consumption was observed for Tritan™ MX710 due to the longer cycle-times. For Makrolon® 2458, molding at three different barrel temperatures revealed that increasing the barrel temperatures actually reduced power consumption during molding.
An Investigation of the Incorporation of Expandable Microspheres into Stretch Wrap
Lauri Kline, Sarah Cheney, Christopher Thellen, Jacob Boone, Allyson Stoyle, Jo Ann Ratto, May 2013
Expandable polymeric microspheres as stretch film components were investigated for pallet wrap applications. Advantages of this novel technology may include reduced fossil-fuel based plastics, solid waste, film density, and weight. Multilayer stretch wrap samples containing microspheres were produced on a stretch film processing line. Optical microscopy showed that the microspheres were intact and expanded 3-5X. Overall, testing showed that tensile, modulus, water vapor barrier, and cling were decreased by the addition of microspheres.
Relationship Between Surface Haze and Crystalline Morphology of Polyethylene Blown Films
Lizhi Liu, Teresa Karjala, Shouren Ge, Mehmet Demirors, May 2013
In previous work, light scattering was utilized to understand the relationship between internal haze and the crystalline morphology of films made by blending LDPE into LLDPE, including the spherulitic and fibrillar morphology. The Morphology Index was introduced to quantitatively describe the morphology change and its dependence on internal haze. In this work, the relationship between surface haze, Morphology Index, and surface roughness obtained from AFM are discussed along with the dependence of surface haze on crystalline morphology (spherulitc vs. fibrillar).
Effect of Aspect Ratio of Multi-Walled Carbon Nanotubes on Electrical, Thermal and Mechanical Properties of Composites with Polycarbonate
Brian Grady, Jiaxi Guo, Frank Yepez-Castillo, Petra Poetschke, Robert Socher, Beate Krause, May 2013
The purpose of this work is to explore the question of how the aspect ratio affects various properties in carbon nanotube/polycarbonate composites. Aspect ratios (prior to mixing) of multi-walled carbon nanotubes varied between 50-500. Tubes were mixed with polycarbonate in a conical twin-screw compounder and then compression molded into flat sheets. Differential scanning calorimetry, dynamic mechanical analysis and tensile properties were measured on the as molded sheets. It was found that the aspect ratio correlated to both the percolation threshold and the rubbery modulus in a simple linear fashion; however with a significant level of scatter. At high aspect ratios, the percolation threshold did not change with aspect ratio which was attributed to a higher relative amount of length reduction during processing. Reducing the amount of mixing, for example, led to a lower percolation threshold which was attributed to less nanotube breakage.

This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.

  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net