The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.
The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?
The automotive industry is changing. Today less means more as engineers are challenged to reduce vehicle weight to meet CAFE and emissions regulations. This presentation will highlight several high-performance solutions for mass-reducing thermoplastic compounds / composites including the strength-to-weight advantages and design considerations for: increasing performance with glass fiber reinforcement; “stiff and tough” very-long-fiber composites; going lighter by using carbon fiber compounds including carbon fiber polypropylene; and shedding weight with glass microspheres and blowing agents.
The higher mechanical characteristics and mass specific energy absorption capabilities of composite materials motivate their use in large primary structures as well as structural and crashworthy components over more traditional metallic designs. Numerical simulation has become a common tool in structural design and crashworthiness. A well-established simulation practice is needed to significantly reduce the amount of experimental testing required during product development and certification. Due to the complex mechanical behavior of advanced composite materials the capability of the existing analytical and numerical models to predict the crushing behavior is limited. The merits and weaknesses of a progressive failure material model MAT54 of a commercially available explicit finite element solver LS-DYNA are highlighted through single-element investigations. Then the suitability of MAT54 to simulate the quasi-static crushing of a composite specimen is evaluated. Through extensive calibration by trial and error the crushing behavior of a semi-circular sinusoid specimen comprised of carbon fiber/ epoxy unidirectional prepreg tape is properly simulated both in terms of the specific energy absorption and load –penetration behavior. The study is extended to five different geometries in order to evaluate the effect of geometric features on crush behavior both from an experimental and numerical standpoint. Finally an energy-absorbing composite sandwich structural concept comprised of a deep honeycomb core with carbon fiber/ epoxy facesheets subject to through-thickness crushing and penetration is considered. With the aid of the building block approach and extensive calibration of the material models and contact formulations the full-scale crush behavior is predicted.
Modeling the behavior and failure of composite materials is challenging and requires models that take into account the material anisotropy nonlinearities and progressive damage and failure. This behavior depends on the local material composition (matrix and fibers) and underlying microstructure (fiber length content orientation) as induced by the manufacturing process. This tutorial will address the modeling of short-fiber-reinforced plastics (in Part 1) and continuous-fiber composites (in Part 2) materials and structures. Part 1 also will cover tests needed to calibrate the material model that can be used in FEA analysis taking into account the fiber orientation predicted by injection molding simulation; Part 2 also will cover the use the classical laminate theory to model the linear behavior of CFRP structures and the use of coupon test results to calibrate the nonlinear stress-strain and failure behavior of the composite.
This paper presents simulation results for prediction of fiber orientation in a center-gated disk using Folgar Tucker model with Newtonian flow and experimentally measured orientation at the gate as an initial condition. A steady moving front with circular shape was included to capture the effects of the frontal flow on fiber orientation. Quadratic and invariant-based optimal fitting closures are also assessed in shear and planar extensional flows and compared with experimental evolution of fiber orientation.
Computer aided engineering-based design methodologies have been utilized throughout the Automotive Composites Consortium Focal Project 4 to assess the vehicle level structural stiffness and impact performance of the composite underbody design proposals and to estimate the potential mass reduction for several candidate material scenarios. To increase confidence in the vehicle level CAE model predictions and to better understand the effect of material and manufacturing variability prototype molded underbody components were fabricated and subsequently built into underbody assemblies to assess their structural performance. Non-destructive component and assembly tests were devised to assess the general static and modal performance of the underbody component and a quasi-static destructive test of a built-up underbody assembly was developed to simulate the deformation and loading observed in the worst case vehicle impact design load case. The paper will discuss the preparation and fabrication of the built-up test assemblies the structural stiffness and modal performance testing of trimmed underbody molded components and assemblies and the destructive testing of assemblies. The predicted performance was investigated for two composite thickness assumptions to account for the additional thickness observed in the prototype components. Predictions were then compared to the measured test results to understand the status of correlation between the response of idealized components and the as-molded prototype test components. A comparison of the non-destructive stiffness and modal test results to the predictions indicated that the stiffness and modal response were reasonable. The destructive underbody test was developed to better represent the physical composite and metallic components. The destructive underbody test was limited by buckling of the longitudinal rail. The results correlated well with predictions up until rail buckling occurred after which significant local damage was
Folgar Tucker model has been in use in commercial software for predicting fiber orientation for fiber/polymer suspensions. One of the major challenges in modeling injection molding processes is the complex flow in the frontal region. However the standard method of using the model with Hele Shaw approximation limits its capability as a prediction tool especially near the advancing front region and in the outer layers of the molded part. In this work the effects of the fountain flow region were assessed by including a simplified semi-circular cap to the finite element mesh. Simulations were performed with a fixed mesh and a full 2-D velocity field was solved using Navier Stokes equation for steady state and the orientation equations were decoupled from momentum equations. We looked at combinations of inlet conditions for orientation and the model parameters to determine which are most compatible with the geometrical simplification used to describe the front. All combinations of model parameters and initial conditions considered in this work qualitatively reproduce the measured orientation profile. However large discrepancies between predicted and experimental orientation near the walls suggest the need for a robust approach to handle the effects of the advancing front on fiber orientation.
The Automotive Composites Consortium (ACC) is conducting a multi-year project to develop a better understanding of the root causes of the visual surface distortion effect known as bond-line read-through (BLRT). Initial studies using a finite-element analysis (FEA) based approach showed good agreement with experimental observations and highlighted the importance of accounting for viscoelastic adhesive material properties. A parametric FEA-based study of a small laboratory scale coupon was conducted to examine the effect of the adhesive joint cross-section geometry and adhesive type on the predicted peak curvature resulting from an elevated temperature adhesive cure. The parameters evaluated in this study were uniform and non-uniform adhesive thickness SMC substrate thickness adhesive bead width and adhesive type.
Hydrogen fuel cell-driven electric cars continue on a slow but steady progression toward commercial viability. Dismissed by many as being too expensive fuel cells are within range of the cost of other vehicle propulsion systems due to advancements in design and manufacturing that have taken place in recent years. Composites have been an integral part of the success of proton exchange membrane (PEM) fuel cells. Bipolar plates made from conductive bulk molding compound have proven to be effective durable and low cost in comparison to other materials. This presentation documents properties recent developments and successful commercialization of thermoset bulk molding compound for transportation fuel cell applications.
Automakers have developed successful computer simulation processes to meet the most stringent crash noise/vibration/ harshness (NVH) and aerodynamic and vehicle dynamics requirements making computer-aided engineering (CAE) an established component in today vehicle-design process. Engineers and management are comfortable with CAE deliverables for traditional metal-based vehicle design and now require reliable simulation technologies and methods to integrate engineered plastic such as carbon fiber laminates in their standardized and automated simulation procedures. This presentation will discuss the challenges of composite material calibration how CAE simulation can be used to aid material characterization the unique modeling and visualization requirement for composites and how optimization simplifies the design of laminate composite structures tailoring the material itself to the loading requirements and avoiding overdesign of part.
The primary aims of the project were to determine the suitability of ESI PAMFORM with regards to modelling a multiaxial fabric and to assess how a manual forming process could be simulated. Material models for multiaxial fabrics were developed through physical testing. Four different simulation methods were investigated and compared in terms of ease of set up processing time and results. An optimisation process was developed using batched input files in order to examine the optimum fabric property for a given component. This process is now used to assist in the selection of a fabric in the early stages of any new component design. A UK government-funded Knowledge Transfer Partnership (KTP) with Nottingham University was started in January 2013 with the aim to create a validated materials database for use with this simulation.
Novel polyurethane matrix resin enables manufacturing of automotive composite parts via high-speed resin transfer molding (RTM) processes. Due to its inherent fracture toughness the polyurethane technology can offer superior fatigue resistance. Technical insights into the mass production of an automotive composite leaf spring will be given. In addition painting and assembly of composites via adhesive bonding are important steps along the process chain where further efficiencies can be realized.
Currently the automotive industry is making a major push toward vehicle weight reduction. While traditional SMC provides several advantages over other materials for use on Class “A” body panels weight reduction is not necessarily one of them. The invention of a lower density Class “A” SMC allows the material to maintain its traditional advantages while also competing with other lightweight alternatives. Unreinforced panels (e.g. fenders roof panels etc.) molded with the material can reduce weight by up to 20%. Closure panels (e.g. hoods decklids etc.) when bonded to low-density inner panels can provide up to 30% weight savings over a traditional SMC assembly. This paper will summarize the development of the material as well as present manufacturing trial and part performance data. Initial evaluations at OEM facilities will also be discussed.
Fiber-reinforced polymer composites are finding new applications in aerospace high-performance as well as medium build-volume alternate powertrain automobiles civil infrastructure sports equipment and emerging alternate energy industries due to their high stiffness-to-weight ratio. Laminated structures are among the most common forms of structural fiber-reinforced polymer composites. Fiber orientation in each lamina and the stacking sequence of the laminated structures can be chosen to tune the desired strength and stiffness. For enhancing the predictive modeling capability of composite structural performance an accurate computation of the effective material properties of composite materials is of special interest to engineers. This paper discusses the prediction of the effective mechanical properties of glass fiber-reinforced epoxy composites (fabricated using an infusion process) utilizing both classical laminate theory as well as a finite element-based micromechanics approach and compares the results against experimental findings. The results from the physical tests exhibit good correlation with the predicted mechanical properties.
The experimental orientation of long semi-flexible glass fibers has been evaluated in complex 3-dimensional flow. Preliminary experimental values of long-fiber orientation were obtained within injection-molded end-gated plaques at multiple percentages of plaque length and width including in the areas of complex flow near the mold side walls. Additionally experimental values of orientation were obtained within the sprue and gate region of the injection molded parts. Modification of the experimental method for measuring fiber orientation in these regions due to the increased length and flexibility of long fibers is included.
It is well known that retained fiber length in random fiber composite materials relates directly to the mechanical properties. Longer fibers lead to higher aspect ratios that increase stiffness and strength as well as enhance the creep and fatigue properties. Direct compounding of thermoplastics promotes fiber length retention by the use of continuous glass fiber in the compounding process. In the same way pre-compounded long fiber pellets provide increased fiber length relative to traditional short fiber injection molding compounds but perhaps not to the extent of direct compounded methods. Despite the known fiber length retention characteristics of these various materials and processes via qualitative analysis and examination of resultant mechanical performance a rapid and robust quantitative fiber length characterization method seems to have eluded the industry to date. Time consuming counting of individual fibers randomly selected from samples seems to be the norm. Based upon these limitations and needs a method to rapidly characterize the fiber length distribution in random fiber composites was investigated. The experimental procedure is discussed and the results to date are presented.
Short-fiber-reinforced thermoplastics are a feasible alternative to develop lightweight materials for semi-structural applications. These materials present a layered structure showing a complex fiber orientation distribution along the molding. The details of fiber orientation in a center-gated disk with diameters of 1.38 and 2.05 mm were obtained in several regions including the gate and advancing front. Several modifications were introduced in the method of ellipses to obtain unambiguous orientation measured over small sampling area. Two fiber suspensions (30 % short glass-fiber PBT and PP) with different rheological characteristics were used in these experiments. The results showed an asymmetric distribution of fiber orientation that gradually washs out as the flow progress. In addition the initial orientation measured at the gate presented a fiber distribution different from the random orientation that is assumed in literature for a center-gated disk.
Two micro-mechanically based composite fatigue models are introduced in this presentation. The focus is on the high- cycle fatigue model implemented specifically for chopped- fiber-reinforced plastics. Its application for a Toyota Motor Europe automotive oil-cooler bracket made of a nylon 6/6 material reinforced by short-glass fibers will be presented. Through this case study the presentation aims to show how the use of proper fatigue-modeling tools developed specifically for composites can increase the accuracy of simulation in the field of durability and pave the way for new simulation standards towards the desired lightweight reductions.
This presentation details how polyurethane spray sandwich technology originally developed for sunshades has been improved for use in more demanding applications such as load floors and parcel shelves. Polyurethane sandwich construction combines the low weight of a honeycomb core with the high strength of a fiber-reinforced polyurethane skin to produce load-bearing parts with very-high flexural stiffness and excellent thermal properties making it an attractive lighter weight alternative to ABS polypropylene sheet-molding compound (SMC) and wood products. Information on the deflection performance of different constructions with different systems including some with natural and some with glass mats will be given to guide manufacturers on the best ways to hit specific targets such as cost thickness or weight. Newer formulations enable productivity improvements including longer open times and shorter demolding times which facilitate production of larger parts and reduced scrap as well as feature higher bio-renewable content than previous versions.
Long fiber-reinforced thermoplastic (FRT) composites in automotive industrial fabrication are of critical requirement -- more so than short FRTs. The FRT products’ mechanical properties and warpage are dominated by fiber orientation within the part. This presentation will discuss a recently proposed new fiber orientation model for improving the prior developed models with regard to interaction and diffusion of the fibers immersed in a matrix namely iARD- RPR (Improved Anisotropic Rotary Diffusion model combined with Retarding Principal Rate model). The iARD-RPR model has been demonstrated to describe changes in fiber orientations well whether treating short fibers or long fibers. In this study 40 wt% glass-fiber immersed in polypropylene matrix was injection molded in a center gated disk and then predicted fiber orientation distribution pass the thickness was compared with measured results. Good agreement with experimental observations was achieved.
Recent modifications to the standard Folgar-Tucker model aim to slow down the evolution of fiber orientation and have been shown to improve orientation predictions in shear flow experiments. However assessment of these models in injection-molded geometries in which shear and extension are both present is very limited. In this work researchers have assessed the evolution of orientation using the newly developed models in a center-gated disk which provides a good injection molding test case combining both shear and extension.
84 countries and 60k+ stakeholders strong, SPE
unites
plastics professionals worldwide – helping them succeed and strengthening their skills
through
networking, events, training, and knowledge sharing.
No matter where you work in the plastics industry
value
chain-whether you're a scientist, engineer, technical personnel or a senior executive-nor
what your
background is, education, gender, culture or age-we are here to serve you.
Our members needs are our passion. We work hard so
that we
can ensure that everyone has the tools necessary to meet her or his personal & professional
goals.
Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:
Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.
Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.