SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library
Keyword/Author:
After Date: (mm/dd/yy)  
 
Sort By:   Date Added  ▼  |  Publication Date  ▼  |  Title  ▼  |  Author  ▼
= Members Only
Conference Proceedings
Morphology and Properties of Nylon-6/Epoxy Composites
Aniket Vyas, Jude Iroh, May 2013
An innovative approach to process epoxy/nylon-6 composite is demonstrated in this article. Firstly, the solution polymerization of nylon-6 was successfully carried out in N-methylpyrollidone (NMP) as solvent. The structure and morphology of nylon-6 precipitated from NMP was studied. Then several films were prepared from blend by varying the amount of nylon-6 in epoxy resin without Curing agent. All films were fully characterized for thermal and dynamic mechanical properties using Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analyzer (DMA). The addition of nylon-6 showed a plasticizing effect on epoxy. The growth of nylon-6 crystals in epoxy matrix lead to unique spherultic multiphase morphology as observed under Scanning Electron Microscopy.
Halogen-Free Organic Pigments: Considerations for Selecting a Colorant
Michael Willis, May 2013
Certain organic pigments contain aryl?halides and alkyl halides as part of the chromophore structure and in some cases unintentional halogenated byproducts from the manufacturing process. Halogenated compounds can be sources for persistent and bioaccumulative dioxins depending on end?of?life cycle processing and are the subject of certain electronic industry standards. Requests for non?halogenated pigments are also trending in the pigments industry. CI or CAS chemical structures provide an expedient way to determine if an organic pigment contains halogen atoms. Analytical testing is required to parenthetically characterize any organic pigment as halogen?free in accordance with established electronic industry standards. This paper does not provide any original work or experimental findings but is rather intended to provide the reader considerations for organic pigments in view of industry initiatives and legislation aimed at protecting the environment.
Enhancement of Induction Heating Efficiency on Mold Surface Using Ferrite Materials
Ming-Shyan Huang, Shih-Chih Nian, Tzung-Hung Tsai, May 2013
Mold temperature plays a significant role to the quality of injection molding process. A high mold temperature setting is feasible to enhance the molding quality but prolongs the cooling time. Use of induction heating to heat the mold surface only seems to provide a feasible solution without scarifying the molding cycle. Still, there exist some problems to be resolved in induction heating such as proximity effect. The proximity effect is the sudden interaction of magnetic fields that are generated because of two nearby coils with inverse current directions, affecting the change of flux. It causes significant decrease of heating efficiency and thereby generates non-uniform heating. To eliminate its drawback, this study proposes a novel magnetic shielding induction heating method by employing ferrite materials to enhance both the heat efficiency and uniformity. Comparing to conventional magnetic concentrator, experimental results depict that the proposed method can efficiently improve the influence of proximity effect; thus increases heating rate and obtains more uniform temperature distribution.
Adhesion Improvements of Nanocomposite Interfaces
Rory Wolf, May 2013
Attention has recently become focused on the performance advantages of nanocomposites, and particularly polymerbased nanocomposites with respect to incumbent “neat” polymers or metallic materials for lightweighting initiatives. In the interest of sustainability, the specific use of bio-reinforced nanocomposite parts and nanostructured coatings within automotive, aerospace, construction, medical and packaging applications is accelerating. These “green” nanocomposites can provide high mechanical strength at low density, low weight, and low cost while generating low carbon dioxide emissions. However, there are interfacial surface adhesion challenges with these and other nanocomposites, in addition to particle distribution and stability issues, which can inhibit full realization of their mechanical performance advantages. This paper will profile polymeric nanocomposites and nanocoatings, as well as define surface modification protocols using atmospheric pressure plasma technologies to optimize interfacial adhesion to similar and dissimilar materials.
Hybrid TPEs: Combining the Strengths of Olefin Block Copolymers with SEBS
Jeff Munro, Greg Li, Lisa Madenjian, Laura Weaver, May 2013
Olefin Block Copolymers (OBCs) are used in a broad range of applications and markets, including soft compounds. Recently, a new grade, INFUSE™ 9010 OBC, was introduced specifically for use in oil- extended compounds. The benefits of this OBC grade on the properties of oil-extended thermoplastic elastomers (TPEs) have been presented previously [1]. Styrenic block copolymers, such as poly(styreneethylene/ butylene-styrene) (SEBS), are frequently used in TPEs with a broad range hardness and other physical properties. The focus of this paper is on the physical and rheological properties that can be obtained in TPEs formulated using both OBC and SEBS elastomers. In general, these hybrid TPE compounds have properties intermediate between that of TPEs formulated with OBC or SEBS alone.
Excellent properties of a novel composite ?-nucleating agent for isotactic polypropylene
Dong Mu, Xu Kai, Zou Hao, Lv Yun, Zhang Liying, Zhang Shijun, May 2013
The thermal behaviors and mechanical properties of isotactic polypropylene (iPP) with a composite ?- nucleating agent VP-101T has been investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and polarized optical microscopy (POM) and mechanical measurements. The crystallization temperature did not increase with the further addition of nucleating agent. The relative ?- form content and the total crystallinity increase a lot. By adding VP-101T, the impact strength could be increased by 3~4 times. The heat deflection temperatures are increased as well. With the increasing concentration of VP-101T, the morphologies of ?-crystals change from to cluster of crystalline. The optimal concentration of VP-101T is 0.2%.
Effects of Clay Loading on the Structures, Mechanical, Rheological Properties of Microcellular Foams of PLA/MMT Nanocomposites
Shyh-shin Hwang, Ching-hsin Hu, May 2013
This study investigated the effect of clay loading on the properties of conventional/microcellular injection molded Poly-Lactic-Acid (PLA) nanocomposites. The results showed that addition of MMT decreases the tensile/impact strength of PLA/Clay nanocomposites. The XRD results showed that with the addition of clay which increased the crystallinity of the PLA/MMT nanocomposites. The thermal properties results showed with the addition of clay which increased melting temperature, degradation temperature and thermal conductivity of the nanocomposites. The clay helps the nanocomposites on having small size cell on the foamed nanocomposites. For the rheological test, with addition of clay into PLA which decrease the viscosity of the nanocomposites. The decreased tensile strength and viscosity is caused by the degradation of the PLA/MMT nanocomposites.
Preparation And Characterization Of LDPE/ Clay Nanocomposites
Boniface Y. Antwi, Johannes A. Awudza, Victor N. Berko-Boateng, May 2013
Low Density Polyethylene/clay nanocomposite is a thermoplastic polymer matrix, that has nanometer scaled organoclay fillers dispersed in it. The characteristic structure of the material enhances its properties. This work therefore reports the preparation of Low density polyethylene filled with nanometer scaled octadecylamine modified Ghanaian clay particles, and determines the structure of the material formed. Commonly known clay samples from Mfensi community in the Ashanti Region of Ghana was used. Octadecylamine modified clays were incorporated into the LDPE matrix by melt mixing route. Structure of the LDPE/ clay nanocomposites was determined by Fourier Transform Infrared spectroscopy, (FTIR), x-ray diffractometry (XRD) and crosslinking density determination. Swelling index measurement was employed in the crosslinking density determination. Complete dispersion of clay fillers in LDPE matrix were best observed at very low modified clay loadings. The low density polyethylene molecules did not intercalate into the clay galleries. Modified clay contents increased the C-H vibrational motions of the LDPE/ clay nanocomposites. Also crosslinking densities of the nanocomposites decreased with increasing clay contents. We believe that dispersion of the polymer, (LDPE) in the clay matrix can be increased by applying high shear. Improving the dispersion will lead to increase of the LDPE loading in the clay composite.
Homogenization of Film Thickness in the Stretching of Polycarbonate
Andrea Wibbeke, Volker Schoeppner, May 2013
In order to study the homogenization of film thickness in the production of self-reinforced polycarbonate through stretching, it is first of all necessary to find appropriate methods for characterizing this homogenization. Different means of doing this are analyzed in this paper, and initial results presented. One way of characterizing the homogenization of the film thickness is through a double logarithmic plot of the true stress over the stretching ratio. Polycarbonate films are deformed in stretching investigations, employing different stretching ratios, stretching temperatures and stretching speeds and, in the course of this, the force versus the deformation is recorded. It is seen here that the degree of hardening is highest for the lowest stretching temperature in each case, and only at this temperature does homogenization of the film thickness occur that is independent of the stretching rate and the stretching ratio. This is also clear from the initial modeling results. The homogenization of the film thickness through deformation can be depicted by the finite difference method. Optical analyses using the 3D laser microscope allow the surface quality of the polycarbonate films to be analyzed before and after stretching.
Effective Blending of Ultrahigh Molecular Weight Polyethylene with Polythylene Via Solid-State Shear Pulverization
Mirian F. Diop, John M. Torkelson, May 2013
Blending ultrahigh molecular weight polyethylene (UHMWPE) with high-density polyethylene (HDPE) via conventional processing methods is challenging; as a result of the vast viscosity mismatch between UHMWPE and HDPE, blends prepared via melt processing contain UHMWPE agglomerates dispersed in HDPE. We demonstrate the utility of solid-state shear pulverization to effectively blend 20 wt% UHMWPE with HDPE. Using rheology, differential scanning calorimetry, and tensile testing we studied the effect of UHMWPE composition on blend properties.
Post-Curing Effects on Thermo-Mechanical Properties of Injection Molded High Performance Phenolics
Martin Hoeer, Gerrit Huelder, Sascha Englich, Michael Gehde, May 2013
Constantly increasing temperature requirements for automotive applications take thermoplastic materials to their limits. Due to their excellent thermo-mechanical properties, which can be enhanced by an additional post curing step, injection moldable thermosets have a high potential as an alternative to high temperature thermoplastics or aluminum. In the scope of this paper the influence of post curing conditions on the thermo-mechanical properties, such as glass transition temperature as well as stiffness or tensile strength are examined.
Synthesis and Corrosion inhibition of polyurea-b-polyimide copolymer Coatings
Linqian Feng, Jude O. Iroh, May 2013
A new class of polyurea-polyimide (PUI) block copolymer coatings has been successfully synthesized and formulated for corrosion protection of Al 2024-T3. The addition of polyurea leads to a remarkable enhancement in corrosion resistance and durability of PUI copolymer coatings, characterized by direct current polarization (DCP) in 3.5 wt% NaCl solution. In terms of chemical structure, the shielding of imide group by hydrogen bond (H-bond) self-assembly with polyurea effectively protects imide ring from hydrolysis. In terms of physical structure, the established H-bonds decrease the diffusivity of coatings, resulting in outstanding barrier property.
Scientifically Designed Barrier Screw
Chan I. Chung, May 2013
Single-screw extruders are most widely used in processing plastic materials for melting solid plastic into molten state, suitable for forming into desired shapes. The performance of an extruder basically depends on the geometrical feature of the screw. Among various types of special screws developed to improve the extruder performance, barrier screws utilizing a barrier flight have been most successful. The barrier flight divides the screw channel into a solid channel and a melt channel. Only molten plastic material can flow over the barrier flight from the solid channel into the melt channel. Many types of barrier screw with different geometries have been developed and successfully utilized in practice. Advances in machining screws now allow manufacturing of screws with complex geometries without difficulty. A novel barrier screw with a complex geometry is developed which confirms to the extrusion mechanisms along the screw, eliminating the shortcomings of previous barrier screws.
Effects of a Locally Inhomogeneous Atmospheric Pressure Plasma Treatment on the Adhesive Strength
Elmar Moritzer, Christian Leister, May 2013
To improve the adhesive strength of bonds for joining thermoplastic parts, atmospheric pressure plasmas are frequently used for pretreatment. To increase the width of the treatment, nozzle designs are deployed with an eccentric orifice rotating around the central axis of the nozzle. This rotating movement of the emerging plasma can result not only in inhomogeneous jet formation but also in uneven pretreatment. To examine the effects of inhomogeneous atmospheric pressure plasma treatment on the properties of the adhesive bonds, peel tests were performed with adhesives on pretreated thermoplastic substrates. Various locally inhomogeneous surface states were achieved by the pretreatment while varying some of the parameters such as the distance between orifice and substrate, velocity, and the position and diameter of the plasma orifice. To describe the intensity distribution of the plasma on the substrate surface, a mathematical model was developed and compared with the attained bonding properties. The results of the peel test correlate well with the modeled intensity distribution of the plasma treatment. In future, this model could be used to obtain a better description of the locally different adhesive properties after atmospheric pressure plasma treatment.
Sandwidh-Structured Thermo Plastic Olefin Resin for Light Weight Automotive Bumper Facias Enables Molding by a Conventional Injection Molding Machine
Kazuhisa To, Masaaki Onishi, Chiaki Asano, Masao Hara, Kazuhiro Furuta, May 2013
A high stiffness, Thermoplastic Olefin (TPO) resin material has been developed for light weight automotive bumper fascias. Although most conventional TPO materials for automotive bumper fascias consist of three components: polypropylene, elastomer and filler, this newly developed TPO consists of 5 components: two kinds of polypropylene, two kinds of elastomer and filler. The composition in this TPO was designed to enable sandwich- structure molding by a conventional injection molding machine. This TPO has not only a much higher modulus, but also better flow-ability when compared to conventional TPO ’s. By using this TPO for automotive bumper fascias, the wall thickness can be reduced from 2.5mm to 2.0mm, while maintaining equivalent performance. The new material, with sandwich structure molding, achieves a weight reduction of approximately 20%. Moreover, in the bumper production process, the thinner wall thickness reduces cooling time for molding by about 50%. As a result, the bumper molding time can be reduced from 60 to 30 seconds, leading to major reductions in the amount of energy consumed in the production process.
Experimental Verification Of Process-Parameter-Dependent Temperature Simulation Of The Two-Stage GITBlow-Process
Elmar Moritzer, Thorsten Plugge, Stefan Seidel, May 2013
The Two-Stage-GITBlow-process is based on the idea of combining advantages of injection molding and blow molding techniques. This is achieved by producing a preform with gas-assisted injection molding, which is then inflated into a larger cavity in the same mold. In this paper the transient development of the temperature distribution in the preform is calculated via finite element method for the entire molding process. Material-specific temperature-optima are simulated and subsequently verified with experimental studies.
Modeling of the glass fiber length distribution in the compounding of short glass fiber-reinforced thermoplastics
Volker Schoeppner, Philipp Kloke, Tobias Herken, Peter Heidemeyer, Johannes Rudloff, Karsten Kretschmer, Martin Bastian, May 2013
The use of short glass fiber-reinforced thermoplastics for the production of highly stressed parts in the plastics pro-cessing industry has experienced an enormous boom in the last few years. The reasons for this are primarily the improvements to the stiffness and strength properties brought about by fiber reinforcement. These positive characteristics of glass fiber-reinforced polymers are governed predominantly by the mean glass fiber length and the glass fiber length distribution. It is not enough to describe the properties of a plastics component solely as a function of the mean glass fiber length. For this reason, a mathematical-physical model has been developed for describing the glass fiber length distribution in compounding. With this model, it is possible on the one hand to optimize processes for the production of short glass fiber-reinforced thermoplastics, and, on the other, to obtain information on the final distribution, on the basis of which much more detailed statements can be made about the subsequent properties of the molded part. Based on experimental tests, it was shown that this model is able to accurately describe the change in glass fiber length distribution in compounding.
Integrative approaches for the mechanical mold design in injection molding
Christian Hopmann, Ivo Erler, May 2013
The injection mold faces a number of different loads during the injection molding process of plastic parts. The effect on the mechanical behavior of the mold, inserts and adjacent processes can be complex and may cause bad final parts. By using an integrative simulation approach it is possible to take the process influence into account when calculating the solid body behavior of the mold in a structural simulation. A newly developed approach at IKV uses the advantages of the integrative approach and extends it by an automatic back coupling of deformation results during the filling simulation. This way the interaction of the melt flow and the deformation of inserts or mold components can be considered during the filling phase.
Creating Sustainable Growth by Incorporating Sustainable Development Behavior in Supplier Selection
Larry Nitardy, May 2013
As we work to make our companies more sustainable, it’s necessary to evaluate not only ourselves but also those we select to help us achieve an improved “triple bottom line”. Our vendors and suppliers today will need to be collaborative partners tomorrow if we want to achieve more impactful financial, societal and environmental results. To evaluate a potential sustainable collaborator, consider a teachable, measurable and repeatable process that outlines the questions and judges the responses; then look for potential suppliers that have an observable culture of sustainable development and continuous improvement. You should be able to witness their culture in action when dealing with company officials and representatives. There are clear signs for companies with sustainable development cultures. When they are combined with a set of stewardship behaviors that drive sustainability, they make great suppliers. We have identified seven distinct stewardship behaviors that can be broken down into contributors to the Triple Bottom Line aspirations of every company focused on their on sustainable growth. For the environmental bottom line, consider “touch”; for societal goals, consider the behaviors such as “teach, treat and tout”; and for the profit driver, focus on behavior resources such as “time, talent and treasure”. These seven behaviors have attributes that can, and should be evaluated and measured as we chose our suppliers. In our presentation, we take a look at each separately to give us insight into the complete value a supplier can deliver.
Ultrasonic welding of hygroscopic materials - influence of moisture on the welding process
Christian Hopmann, Anika van Aaken, May 2013
The welding of hygroscopic materials such as polyamide can lead to unstable conditions during the welding process. Due to changing material properties the ultrasonic welding process is influenced largely by the moisture level of the welding parts. To achieve stable welding processes and high weldline qualities it is necessary to learn more about the influence of moisture on the material properties and the ultrasonic welding process. To perform a scientific examination of the influence of moisture on the ultrasonic welding process, the interactions between the material properties and the welding process are determined in relation to the moisture content. With the aid of welding tests, it can be shown that with constant welding parameters the attainable weld strength decreases with increasing moisture load. With recommendations on optimum moisture contents and a process-integrated control of the actual moisture content, poor-quality welds can be avoided. Through a direct control of the actual condition it is possible to dispense with complete predrying, which has until now been seen as the only way to ensure reliable welding of hygroscopic materials.


This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.




spe2018logov4.png
  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net