SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library
After Date: (mm/dd/yy)  
Sort By:   Date Added  ▼  |  Publication Date  ▼  |  Title  ▼  |  Author  ▼
= Members Only
Conference Proceedings
Mechanical Properties Of Polyacrylonitrile Nascent Fibers Prepared By Super-Large Length-Diameter Ratio Twin-Screw Extruder With Different Screw Speed
Zhang Shuimu, March 2019
Polyacrylonitrile(PAN)-based carbon fiber is widely used in our daily life. Due to the increased demand for carbon fiber, the production capacity of PAN fiber is in urgent need to be improved. Twin-screw extrusion (TSE) is a general method for producing PAN fiber. In this paper, PAN nascent fibers were prepared by a self-developed super-large length-diameter ratio twin-screw extruder. The effect of screw speed on the initial residence time and mechanical properties of PAN fibers was investigated. The results showed that as the screw speed increases, the tensile strength tends to decrease.
Residence Time Distribution In Solid-State Shear Pulverization (Sssp) Extruder
Katsuyuki Wakabayashi, March 2019
Solid-state shear pulverization (SSSP) is a twin screw extruder-based processing methodology that has been developed and applied to a wide range of polymer-based materials over the last 20 years. Detailed processing-structure-processing relationships can be realized when the complex interplay between the numerous operating parameters of SSSP can be consolidated through universal processing parameters. One such parameter, residence time distribution, is the focus of this paper; tracer pulse experiments are conducted for a range of SSSP operating conditions, and important characteristics and trends are extracted towards a better understanding of the SSSP process.
Reaction Injection Molding Of Polyurethane Medical Device Components
Ian Pierson, March 2019
Polyurethanes (PU) are widely used in the medical device industry due to their desirable combination of biological compatibility and stability, mechanical durability and processability [1-4]. Components forming a medical device are often small in dimension and intricate in structure, and a common operation in medical device manufacturing is the bonding of different device components to each other or an additional substrate. The manufacture and assembly of these intricate device components requires complex molds and molding methods. The bonding operations can be achieved via a number of methods, including welding processes, adhesive bonding, and thermoplastic reflow. However, these methods have limitations on bond strength and stability, and frequently require the introduction of a new material into the device. In this paper, we examine the potential to use and optimize reaction injection molding of medical PUs to create an intricate part and a bond between multiple components in a medical device.
Improved Performance Of Polyurethane Foam Insulation Using Polylactide Biopolymer Liners And Its Impact On Energy Efficiency Of Refrigerator And Freezers
This paper compares the effect of constant-temperature aging on the thermal conductivity of polyurethane foam in simulated refrigerator panels made from polylactic acid biopolymer from NatureWorks (Ingeo®) and high-impact polystyrene. Specimens were aged at room temperature and thermal conductivity measurements were made at 10°C over a period of 2.4 years. The energy use over the life of refrigerator and freezer is also calculated using the Energy-Efficient Refrigerator Analysis program developed by the United States Department of Energy to estimate the energy savings potential of various technology option upgrades (cabinet and refrigeration system) for rulemaking purposes. The results show that energy savings from implementing the Ingeo liner range from 818 to 1395 kWh (7.3 to 12.5% of total energy use) over a 15-year period.
Pyrolyzed Soybean Hulls As Fillers In Polypropylene And Linear Low Density Polyethylene
Erol Sancaktar, March 2019
Pyrolyzed (450 and 500oC for 4 minutes) Soybean Hulls (PSBH) were used in as-received and ballmilled conditions as filler in Linear Low Density Polyethylene (LLDPE) and Polypropylene (PP) to evaluate mechanical behaviors for composites of PP/PSBH and LLDPE/PSBH. While the as received PSBH particles varied in size considerably with size going up to 710 μm for about 52% of the particles, and larger for the rest, the mechanical properties did not change substantially when as received PSBH was ball milled down to 10 μm or smaller size, except for maximum strain values for the LLDPE/PSBH composite. Elastic modulus of PP/PSBH increased with increasing PSBH amount. Elastic modulus and maximum stress values for LLDPE/PSBH increased with increasing amount of PSBH filler. When the trends of the elastic moduli for PP/PSBH and LLDPE/PSBH composites were compared, the effect of PSBH filler amount was found to be similar on both composites, resulting in increasing behavior for the elastic moduli in similar proportions. In the case of strain values at maximum stress, PSBH addition affected LLDPE more than PP with higher amounts of strain reduction. The maximum stress values presented opposite behaviors with those for LLDPE increasing while those for PP decreasing. At the highest PSBH amount added (50 %wt.) the maximum stress and the corresponding strain values for both LLDPE/PSBH and PP/PSBH composites became very close when using as-received filler. Our results also showed that pyrolysis of SBH at 450 and 500oC for 4 min resulted in significantly higher reductions in feed-stock weight and higher values in carbon content in comparison to pyrolysis at 275 and 325oC, which correspond to typical torrefaction temperatures.
Quality Index Design For Online Monitoring Injection Molding Process
Jian-Yu Chen, March 2019
Quality control is a crucial issue in the injection molding process with target of obtaining a high yield rate and reducing production cost. However, conventional injection molding acts like a black-box in which the flowing behavior of polymer melt within cavities is unseen, and the tuning of process parameters is heavily relied on operators' experience, design of experimental methods, or even trial-and-error. Such approaches are not only time-consuming but also lack of assuring consistent injection molding qualities and quality control is then required. Nowadays with the advance of sensing technology, many sensors are available to detect the flowing behavior of polymer melt within mold cavities. Particularly the pressure, velocity, and temperature that affect the flowing ability of polymer melt can be detected in time. In other words, injection molding now has been transformed into a grey-box and a scientific viewpoint to tune process parameters can be realized. In this research, a quality index extracted from pressure profile is aimed for online quality monitoring. In addition, the clamping force increment quality index extracted from the tie-bar elongation which is detected by strain gauges attached on tie bars, free of invading injection mold structure, is paid much attention. To verify the feasibility of the designed quality index using to prediction the injection molded quality, varying barrel temperature, back pressure and rotational speed of plasticizing screw those can affect the plasticizing quality of raw materials are conducted in this investigation. Experimental results reveals that the clamping force increment as well as pressure peak index extracted from injection system pressure, nozzle pressure, end-of-filling cavity pressure profiles during injection molding are highly correlated with injection-molded qualities and thereby are feasible to be a good quality indicator.
Role Of Polyamide 6 As The Antishrinkage Agent In Pa 6/Pebax Blends
Yeh Shu-Kai, March 2019
Polyether block amide (PEBAX) is a thermoplastic elastomer (TPE) known for possessing high impact resistance and significant flexibility over a wide range of temperatures. The foaming ability of PEBAX was investigated by batch foaming using CO2 as the blowing agent. Because the tensile modulus of TPE is low, TPE usually shrinks right after foaming. In this study, polyamide 6 (PA 6) and styrene maleic anhydride (SMA) were blended with PEBAX to reduce foam shrinkage. The results indicated that SMA and PA 6 help in reducing foam shrinkage. The microstructure images showed that cell density increased and the cell size decreased after these antishrinkage agents were added.
Determination Of The Barrel Temperature Setting Of Single Screw Extruders Using Fuzzy Logic
Verena Resonnek, March 2019
In this article, a self-optimizing approach using fuzzy logic to determine the correct barrel temperature setting of single screw extruders is presented. After quantifying characteristic values to measure the polymer melt quality, experimental investigates were carried out. The experimental investigations contribute to the acquisition of process knowledge thus to the development of a knowledge database. The results of the experiments clearly demonstrated the improvement of the material and thermal melt quality by changing the barrel temperature setting. By applying fuzzy set theory, imprecise or vague knowledge can be included into a model that can be mathematically displayed, too. Furthermore, the description of linguistic variables using fuzzy sets can be used to construct an expert system that adequately processes qualitative information. Therefore, a fuzzy logic based algorithm was developed for setting the barrel temperature setting autonomously. Through the experimental results, the proposed fuzzy algorithm has been shown to be powerful under laboratory conditions. Moreover, the fuzzy controller is shown to be useful since the determination of a barrel temperature setting within the desired melt homogeneity independently of the machine operator or trial and error experiments.
The Effect Of Graphene Nanoplatelets On The Complex Viscocity Of High Density Polyethylene
Yue Xu, March 2019
In this paper, we investigated the rheological properties of high density polyethylene (HDPE) based composites filled with different amounts of graphene nanoplatelets. The composites samples were prepared in the form of films by the method of melt mixing. A parallel-plate rheometer was used to measure the rheology properties, including the complex viscosity, storage modulus and viscous modulus. The LVE range of all the samples was determined firstly, and then we studied the rheological properties of pure HDPE and graphene/HDPE composites. The effect of graphene content on the rheological properties of the graphene/HDPE composites at 150 °C was especially investigated. The results showed that the complex viscosity of the graphene/HDPE composites was decreased and then increased with increasing the content of graphene from 0.25 to 1.0wt%. However, increased graphene content did not exhibit distinct effect on storage modulus and viscous modulus of graphene/HDPE composites.
Determining The Degree Of Agglomeration Of Solid Additives While Using Inline Injection Molding Compounding (Iimc)
Jannik Jilg, March 2019
During the plasticization of polymers with fillers and reinforcing materials within the special process of inline injection molding compounding (IIMC), agglomerations of the additives cannot be excluded. The agglomerations lead to uncertain process management, which is why this study evaluates a process for rapid determination of agglomerates and degree of agglomeration for further development of the IIMC. In addition to the degree of agglomeration, the tensile strength was also investigated in order to detect a correlation between the determined parameters.
The Influence Of Different Die Geometries On The Extrusion Process Of High-Consistency Silicone Rubber
Fabian Verheyen, March 2019
Silicone Rubber and especially High-Consistency Silicone Rubber (=HCR), are typically processed in the extrusion process. Due to the high requirements in terms of the material properties and the geometric dimensions, a fundamental knowledge of the whole process including experiences in tool design are essential. In this study, HCR with different Shore-hardnesses are extruded on a vertical silicone extrusion line with various breaker plates with different length to diameter ratios (=L/D-ratio) in order to analyze the influence on the whole extrusion process. It has been shown that soft materials, regardless of die geometry, achieve higher throughputs compared to harder compounds. Increasing counter pressure, e.g. due to longer die lengths, reduces the volume flow rate per revolution and reduces the throughput. Tools with a small L/D ratio achieve the highest throughput. With regard to die design, it can be seen that dies with a smaller L/D ratio have clear advantages: due to their short length, they represent a smaller pressure consumer. As a result, the dwell time in the extruder is shorter and the risk of scorch is reduced. The absolute value of the swelling behavior is larger, but can be predicted with high accuracy. Shorter tools also show less flow instabilities.
An Anomaly In The Drop Dart Testing Of Polyethylene Film
Arnold Lustiger, March 2019
Drop Dart testing is one of a number of standard characterization techniques employed as a means to characterize film toughness. In this test, a dart with varying weights are dropped from a prescribed height on a film and the weight at which 50% of the tests penetrate the films is reported. It was found that friction between the dart head and the film can adversely affect the results in this test. Application of talc to the surface of the film prior to the test, thus reducing friction between the dart head and the film, improved results significantly in metallocene catalyzed linear low density polyethylene films. The addition of slip and antiblock often resulted in significant improvement as well. These results call into question the utility of the test as it is presently implemented to measure true, intrinsic film toughness. On the other hand, if anomalous frictional effects were to be eliminated through the routine application of talc to the film surface, then the validity of the test can be restored.
Polypropylene-Polyester Fiber Composites: Obviating The Toughness-Stiffness Tradeoff
Arnold Lustiger, March 2019
Polymers in engineering applications generally display a tradeoff between stiffness and toughness. In the case of polypropylene (PP), glass fibers are often added to increase stiffness, but at the cost of toughness. Conversely, when rubber is added to PP either in reactor or post reactor, toughness is increased, but at the cost of stiffness. However, when polyester fibers are added to polypropylene, this tradeoff can be obviated. Polypropylene-polyester fiber composites display a combination of stiffness and toughness not accessible to PP homopolymer, impact copolymers or other compounded products. The primary toughness mechanism is pullout of the polyester (PET) fibers.
Rheological Material Characterization Within The Injection Molding Process
Alexander Geyer, March 2019
A new evaluation method for inline viscosity measurements in injection molding is presented, which allows characterizing the pressure dependence of a plastic melt within one cycle. A viscosity measurement die in combination with a flow spiral mold was used. A fit of the increasing pressure curves allows selecting various counter pressures that can be used to calculate the pressure coefficients. This method exemplarily is demonstrated for Polypropylene (PP). The resulting pressure coefficients show a good accordance to literature values, but are slightly lower in comparison to the data calculated with other methods.
Blending Ca With Pbs To Increase The Bonding Strength In Two-Component Injection Molding
Marco Klute, March 2019
Since cellulose acetate (CA) shows no adhesive properties in the two-component injection molding process with bio based thermoplastic polyurethane (TPU), blends of CA and polybutylene succinate (PBS) were produced to decrease the interfacial tension between the materials. While the interfacial tension was calculated from the results of a drop shape analysis, the adhesion strength was measured in peel tests according to the guideline VDI 2019. The comparison of the results gave information about whether the drop shape analysis is a valid method to analyze the adhesive characteristics of material combinations for two-component injection molding. Moreover, tensile tests were performed, to characterize the mechanical properties of the CA/PBS blends. It could be shown, that decreasing the interfacial tension between the two components by blending the CA with the PBS increased the adhesion strength. Adding 30 % PBS caused a cohesive failure of the soft component in peeling tests, showing a bonding strength of at least 147 N.
Physical Aging Behavior Of Aliphatic And Aromatic Thermosets Of Various Cross-Link Densities Conditioned With Hydrostatic Pressures
Brendan Ondra, March 2019
In a previous communication, we discussed results from a thermal investigation in which we studied strategies to accelerate physical aging of polymeric glasses [1]. Specifically, we performed thermal annealing and pressure conditioning on four distinct epoxy-based thermosetting resins and evaluated the physical aging behavior using Differential Scanning Calorimetry. Additionally, we evaluated, from a thermal perspective, the influence of molecular properties and network architecture on the tendency of these glasses to age. We showed that, from a thermal perspective, pressure conditioning imparts an aging which is distinct from that produced via thermal annealing and that cross-link density appears to have a stronger influence than backbone stiffness in affecting the tendency (rate) of aging. Based on the intriguing results from this previous work, in this communication, we extend the comparative investigation between pressure conditioning and thermal annealing by examining the glasses using both linear and non-linear mechanical metrics. In doing so, we aim to uncover in greater detail how pressure influences the nature of polymer glasses and facilitates accelerating their physical aging behavior.
Process-Technical Examination And Analysis Of Coiled Filament Mats Based On Production According To Fitzer
Tobias Westhues, March 2019
Coiled filament mats (CFM) are manufactured within an extrusion process and special downstream peripherals. A large number of endless polymer strands are joined to form a spatial mat structure. The individual, randomly arranged melt strands are connected at the contact points, thus enables the structure to be held together. Possible fields of application can be found wherever foam mats are currently used. CFM products offer a number of advantages, such as good air circulation, suitability for allergy sufferers and good cleaning possibilities. In order to achieve defined and reproducible product properties as a foam mat substitute, it is necessary to determine the physical properties using a suitable test setup. This paper will provide a comprehensive overview of the state of the art in the production of CFMs, tests of mattresses and foam structures and current research. Subsequently, the first experimental investigations are presented which for the first time associate the influencing parameters in mat manufacturing with mat criteria.
Mechanical Actuation In Polymeric Bilayers
Leslie Maynard, March 2019
Smart materials are designed materials that have properties that can undergo controlled change by external stimuli and these materials are increasingly being used as sensors and actuators for robotics and artificial intelligence systems. In this study, polymeric bilayers acted as smart materials that could bend, curl, and twist after applying and releasing a mechanical strain. The polymeric bilayers were created using polyolefin thermoplastic elastomers (TPEs). Ethylene octene copolymer TPEs (POEs) with different degrees of crystallization were compression molded separately then adhered to one another through compression molding. The samples were then cut into strips of varying length to width (L/W) ratios and uniaxially strained. After release of the strain the strips either bent, curled, twisted, or showed a combination of 2 responses depending on the elastic recovery ratio of the 2 layers and the applied strain. This study showed that easily processable TPEs can be used as actuators for mechanical strain applications and the deformations can be reversed through heat application at low temperature for a very short period of time.
Lightweight Automotive Composites For Lowered Emissions
Rahul Rane, March 2019
A weight reduction of 10 % can enhance the fuel efficiency of a combustion engine vehicle by 6 to 8 % and the travel range of a battery electric vehicle by as much as 10%. Automotive composites can offer massive weight savings over steel. Besides this these materials also offer other advantages such as improved noise, vibration and harshness or NVH performances, corrosion resistance and resistance against denting. Composite materials can help in part integration leading to lower tooling cost and high speed to market due to lesser tooling lead time. The automotive parts produced using mass producing processes such as sheet molding compound (SMC) technology can offer composite parts (with sp. gravity 1.8 to 1.9) that are 20 to 25 % lighter than steel parts. Efforts are underway to develop composite materials which can offer weight savings of up to 30 to 70 % over steel. Nanocomposite technology has attracted significant interest as a light-weighting technique in recent years. This technique is however limited by the high cost of the nano-particles. In this project we have explored the use of a least expensive nano-material to manufacture and stabilize light-weight sheet molding compounds with specific gravity down to 1.25. Because of their higher surface to volume ratio we can obtain the required performances with lower loading levels of the nano-particles thereby offering the advantage of reduced density. For reaching specific gravity down to 1.45 the SMC technology is combined exclusively with nano-technology. To reduce it further down to 1.25 the nano-SMC technology has been combined with hollow glass microspheres or glass bubble technology. The major challenge was to realize the reinforcing effect of the nano materials by ensuring good compatibility with the resin matrix and high degree of dispersion. Through careful design and execution of experiments, the raw material compositions and their mixing sequence have been optimized for attaining well dispersed compositions of lightweight composite materials with specific gravity in the range of 1.65 to 1.25. The composites so designed and developed have been characterized for their molding, mechanical and painting performances. Overall, the performances have been found to be comparable or in some instances higher than that of the competition. Further the formulations have been fine-tuned for uniform pigmentation based on the orders received from two of the leading OEMs; one requiring lightweight parts of Sp. gravity of 1.45 and the other one requiring lightweight parts with Sp. gravity of 1.28. Although these parts are intended for under the hood applications they require good finish as they would be visible during maintenance and care.
Study On Compatibilization Of Multicomonent Composites Through A Transitioning Phase
Xiwen Zhang, March 2019
A transitioning layer was introduced between the matrix and the dispersed phase of the otherwise incompatible components. The transitioning phase should have good interactions with both the components, resulting in lower interfacial energy between the phases. Theoretically, it is hypothesized that if the sum of the interfacial tension between the transitioning phase and both the components of the composite is smaller than the interfacial tension between the two components, the encapsulation of the dispersed phase by the transitioning phase is spontaneous, which will lead to better interphase interfacial interactions. Since this compatibilizing technique relies purely on judicial selection of a polymer with suitable surface energy as the transitioning layer, no tedious chemical synthetic processes are required. To illustrate the proposed technique, incompatible Poly(lactic acid)/Thermoplastic Starch (PLA/TPS) blend is compatibilized with Poly(butylene succinate) (PBS) as the transitioning layer in this study. With PBS encapsulating the dispersed TPS phase, PLA/PBS/TPS 60/10/30 wt% demonstrate a better mechanical synergy, with significant improvement in strength, ductility and toughness as compared to PLA/TPS 70/30wt%. This technique can also be applied to design other multicomponent blends or composites.

This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.

  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net