SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library
Keyword/Author:
After Date: (mm/dd/yy)  
 
Sort By:   Date Added  ▼  |  Publication Date  ▼  |  Title  ▼  |  Author  ▼
= Members Only
Conference Proceedings
Renewably Sourced Engineering Polymers for High-Performance End-Use Applications
Richard Bell, September 2009
External trends have continued to drive end users in consumer and industrial applications to seek renewably sourced and sustainable solutions to use in more and more demanding applications. To meet this need a portfolio of renewably sourced engineering materials was developed. The products are designed to provide performance and functionality equivalent to or better than today’s petroleumbased materials while reducing the environmental footprint. The portfolio includes glass-reinforced thermoplastic grades for high strength and stiffness.
Improved Matrix Materials for High-Performance Carbon Fiber Aromatic Thermosetting Copolyester
Zeba Farheen Abdul Samad, September 2009
The use of new aromatic thermosetting copolyester (ATSP) is described and compared to the best available epoxies for high performance composites. ATSP oligomers display liquid crystalline behavior which was identified using optical microscopy with cross-polarizers.ATSP tailored to have a liquid crystalline structure has reduced stresses at the fiber/matrix interface and better thermal fatigue resistance compared to epoxy.
Low Temperature Cure Polyurethane Adhesive for Primerless" Composite Bonding "
Michael Barker, September 2009
A new polyurethane adhesive has been developed that provides excellent adhesion to SMC HSU and RTM without surface preparation and requiring only a room-temperature cure or greatly reduced postbake temperatures. This presentation will review where such an adhesive will find application its general chemistry and supporting data.
Bentley Motors Develops Unique Directional Carbon Fibre Preforming Process for Chassis Rails
Antony Dodworth, September 2009
Details are presented on an automated process for manufacturing net-shape charges for compression moulding using a spray-deposition technique. The novel process uses a resin-spray technique and magnetic fibre to position and hold fibres onto the tool face. The process is intended for producing structural components using discontinuous bundles for medium-volume applications.
Reducing Setup Costs: Tooling Force Prediction in Resin Transfer Moulding (RTM) & Compression RTM
Andrew Wabran, September 2009
Mould tools used for processes such as RTM and compression RTM must withstand significant forces generated by the fluid resin and the fibrous reinforcement. Prediction of these forces will allow for optimizations in setup costs and time and maximize the usage of the capabilities of peripheral equipment (such as presses). SimLCM is being developed at the University of Auckland as a simulation package with the capability to predict clamping forces and stress distributions during complete moulding cycles for RTM and CRTM.
Pushtrusion™ Direct In-Line (D-LFT) Compounding Technology versus LFT Pellets & GMT Sheet
Eric Wollan, September 2009
PlastiComp’s direct in-line (D-LFT) compounding process provides processors of fiber-reinforced thermoplastics a simple and affordable alternative to pre-compounded pellets and GMT sheet while yielding equivalent and in some cases slightly higher mechanical properties. This paper summarizes a comparative study of the properties of D-LFT vs. traditional LFT pellets in an injection-molding process as well as D-LFT vs. GMT sheet in a compression-molding process.
A Formulation Study of Long Fiber Thermoplastic Polypropylene (Part 1): The Effects of Coupling Agent Type & Properties
Creig Bowland, September 2009
The relationship between the resin and fiber properties in polypropylene long fiber thermoplastics is further analyzed in the second part of this work. The properties of the maleic anhydride grafted polypropylene additives (coupling agents) are studied and correlations between the maleic anhydride content melt flow and base polymer used is presented. Polypropylene long fiber thermoplastics pellets were compounded with various coupling agents. The materials were then molded and tested. The results of the study are presented.
High Performance Reinforcement: A Pathway to Density Reduction while Maintaining Physical Properties of Polyolefin Composites
David Lake, September 2009
To achieve significant part weight reductions of 15-20% Milliken Chemical's high performance reinforcing (HPR) additive may be an excellent choice for the replacement of talc and other mineral fillers in polypropylene composites. For instance vs. talc HPR will typically provide comparable or superior performance with only about one-third of conventional talc concentrations. Furthermore these improvements may be realized without any detrimental effects on aesthetic properties.
Innovative PPS Blow-Molded Air Duct for Turbocharged Diesel Engine
Duane Emerson, September 2009
A new patented in-mold assembly process forms an optimized assembly using a combination of blow molding and injection molding for a turbo-charged diesel charge air duct. The process incorporates a 15%-GF-reinforced blow-molding grade and a 30%-GF-reinforced injection molding grade of polyphenylene sulfide. PPS was the material of choice due to its superior heat and chemical resistance.
Advances in Thermoplastic Composites Using CBT
Fred Deans, September 2009
The use of cyclic-polybutylene terephthalate (C-PBT) for manufacturing high-performance composites is taking on new roles. Advances in injection molding RTM molding pultrusion and composite tooling are benefiting from the use C-PBT thermoplastic resins leading to the development of new C-PBT technologies and applications.
Alternative Methods to Enable the Powder Priming of SMC
Hamid Kia, September 2009
Previous work has shown that the newly developed SMC systems are powder-primer ready in straight-through operations. However after an extended stoppage in the operation – such as July shutdown – the success of the powder application depends on the severity of temperature ramp in the oven. To overcome this issue alternative methods are proposed such as 4 min. of preheating in the oven at 180°C or 3 min. of IR exposure.
The Influence of SMC Formulation Inner Panel Thickness & Bond Stand-Offs on Bond-Line Read-Through Severity
Kedzie Fernholz, September 2009
Two experiments designed to understand the relationship between material and process factors and bond-line read-through (BLRT) severity will be discussed. Regression analyses of the data collected in these experiments were able to establish relationships between the experimental factors and BLRT severity with at least 80% correlation.
Flexibility in the Direct Strand Moulding Compound (D-SMC) Process
Tobias Potyra, September 2009
In order to improve quality issues as well as to establish an integrated and continuous process for compression-moulded parts a direct processing technology has been developed. This presentation should demonstrate the flexibility of the new direct-SMC technology in terms of use of alternative and new raw materials and formulations.
Recent Advances in Class A Polyurethane Long Fiber Injection (LFI) Composites
Usama Younes, September 2009
Recent advances in related polyurethane chemistry have increased the commercial viability of the long fiber injection (LFI) process for producing very-large composite parts such as entry-door skins truck body and spa panels and recreational boat hulls. These advances enable the LFI process to achieve previously unattainable extended gel times on an open hot mold retain a relatively short demold time and form defect-free surfaces that can lead to the Class A surfaces required for large automotive body panels.
Composite Power-Train Components: Reducing Warranty Costs & Improving Part Quality
Toai Ngo & Mayur Shah, September 2009
Sheet-molding compound has been used in underhood applications and is extending its reach to drivetrain components. This presentation will show how vehicle manufacturers have reduced costs and improved quality through product designs that eliminate hardware enhance capability and improve system performance.
Automotive Composites Consortium Structural Composite Underbody
Libby Berger, September 2009
The Automotive Composites Consortium Focal Project 4 (ACC FP4) is a joint program between GM Ford and Chrysler to develop structural automotive components from composite materials. Part of this project is a structural composite underbody capable of carrying crash loads. Phase 2 of the project involves a full design of the underbody including design for durability and feasible component manufacturing and vehicle assembly scenarios.
BMC Composites: High Value Metal Replacement Material Alternative for Automotive Powertrain Applications
Jim Cederstrom, September 2009
Performance requirements for underhood components are increasing making historically used thermoplastics unsuitable for next-generation engines. The need for higher thermal chemical and mechanical resistance is opening the door to thermoset bulk-molding compounds (BMC) for critical metal-replacement opportunities successful examples of which will be presented.
Application of Digimat Micromechanical Modeling to Polymer Composites
Peter Foss, September 2009
DIGIMAT micromechanics-modeling software was evaluated to predict the nonlinear stiffness and strength properties of glass-filled nylon. In this particular case due to the high aspect ratio of the fibers the properties of reverse engineered effective actual matrix properties were needed to accurately correlate both the matrix" rather than theflow and transverse to flow stress-strain behavior."
Advanced Simulation of Fiber-Reinforced Automotive Radiator End Tanks by Capturing Anisotropic Material Properties
Suresh Shah, September 2009
This study aims to capture realistic anisotropic properties of a plastic material in a structural analysis. Moldflow software has been used to obtain the fiber-orientation details for a plastic radiator tank. This fiberorientation output data have been transferred to the structural analysis software (ABAQUS using commercially available interface software (DIGIMAT). This integrated simulation technique helps in accurate prediction of burst pressure strength of the plastic tank.


This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.




spe2018logov4.png
  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net