SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library
After Date: (mm/dd/yy)  
Sort By:   Date Added  ▼  |  Publication Date  ▼  |  Title  ▼  |  Author  ▼
= Members Only
Conference Proceedings
The Interactions between TIO2 Surface and Polymer Additives
R.B. Maynard, P.M. Niedenzu, May 2007
A common pigment used in many plastics application is titanium dioxide, TiO2. The pigment is a very effective light scattering inorganic oxide for the coloration and protection of plastic articles. TiO2 is also an insoluble material within a polymer matrix that has the ability to adsorb other materials within the matrix. Additionally, a TiO2 particle can catalyze the formation of chromophores from additive deactivation. This aper describes the adsorption behavior of several TiO2 materials compares the rate of chromophore formation in a polyethylene matrix compounded.
Effects of Surface Geometry of Nucleating Agents on Heterogeneous Nucleation
Siu N. Leung, Chul B. Park, Anson Wong, May 2007
Ideal nucleating agents are expected to improve the cell morphology of plastics foams (i.e., higher cell densities, smaller cell size, and narrower cell size distribution) by providing heterogeneous nucleation sites. Surface geometry is one of the factors that govern the nucleating power of nucleating agents. Based on the computer simulation of a batch foaming process of polystyrene/carbon dioxide system, this paper indicates that nucleating agents having numerous crevices of small semi-conical angles, are most desirable for polymeric foaming processes.
Application of Polymer Welding Theory to Industrial Process Design
Ronald D. Moffitt, Wei Zhang, William J. Donohue, Tom A. Zbell, W. Charles Mattox, Wesley J. Queen, May 2007
Welding time shifting expressions based upon time-temperature superposition (tTS) and hot air nozzle spacing were used to establish industrial process scale-up and design relationships for a continuous cured-in-place pipe (CIPP) liner manufacturing process. The application of tTS was successfully demonstrated to apply equally well to the commercial CIPP assembly bonding of thermoplastic polyurethane tape to a coated thermoplastic polyurethane coated felt substrate and to the hot air self-welding of a polyester needle-punched felt.
Synthesis and Characterization of a Cationic Monomer with ATRP Initiation Sites
Kory Slye, May 2007
The current coronary artery stent coating, styrene-bisobutylene- b-styrene copolymer, [1] has been researched and several problems arise when this coating is used. A alternative coating needs to be developed with several polymers forming from the main chain of the polymer. Several different bromination techniques have been researched to achieve the desired polymer to create the drug eluting coronary artery stent. This paper will describe the methods used.
PVC Nanocomposites – Methods of Promoting Filler Dispersion
Marianne Gilbert, Noreen L Thomas, Xiaoran Zheng, Styliani Georgiadou, Brian Brooks, May 2007
The most widely used nanofillers for plastics are the organically modified nanoclays, in particular montmorillonite. However these clays cannot be used successfully in PVC, as they contain ammonium groups which accelerate PVC degradation. This paper considers a number of alternative nanofillers for both rigid and flexible PVC, and focuses on methods of dispersion of these fillers (involving mixing, melt blending, and polymerisation), suitable formulations to avoid thermal degradation, and potential for property enhancement.
Field Failure Analysis: Pinhole Mode of Failure of Polyolefin Pipes
A. Caratus, Z. Zhou, A. Masud, A.Chudnovsky, May 2007
Pinhole mode of polyolefin pipe failure in water distribution systems is commonly assumed to result from a sharp object impingement and attributed to inadequate installation practice. The cases of this mode of failure are investigated by direct observations of field failure combined with review of installation, service condition and stress analysis of the problem in question.
Additives for Improving Processing and Properties of Polylactic Acid
Zuzanna Cygan, Mohit Singh, Sri Seshadri, May 2007
Polylactic acid (PLA) is a bioresin that is rapidly expanding into a variety of applications requiring a range of processing techniques including extrusion, calendaring, blow molding, and thermoforming. However, the low melt strength and brittle nature of the polymer provide challenges in processing and in the final product performance. We have demonstrated that the use of additives can improve processibility, melt strength and impact strength of PLA. The effect of additive type and loading levels on PLA resin properties and clarity will be presented.
Broadband Infrared Weld Strength as Compared to Other Mainstream Plastic Welding Techniques
Daniel D. Hershey, Scott Caldwell, Ken Nelson, Paul Rooney, May 2007
Three welding technologies are compared using a hydrostatic burst test as the testing standard. Vibration (VW) and Hotplate (HP) welding are used as benchmarks of performance for Broadband IR (IR) welding. An injection molded three-inch diameter sphere in various materials is welded and tested for all three processes. Pressure vessel characteristics and assumptions help to determine weld tensile strength to be compared against parent material tensile strength.
Benchmarking Thermoplastic Elastomers against Traditional Rubbers in Automotive Body Mount Applications
Travis Belz, Matthew Loeffler, May 2007
Traditionally, automotive body mounts have consisted of a steel casing with either a natural rubber, a blend of natural rubber to increase certain properties, or Butyl. In the past several years synthetic rubber technology has expanded and thermoplastic elastomers (TPE) have been introduced. TPEs can retain the same properties of a natural rubber and reduce the cost of producing a body mount. This study comprises a comparison of thermoplastic elastomers to materials traditionally used in automotive body mount applications.
How TPV Out-Performs EPDM in Acoustic Properties for Automotive Sealing
James T. Browell, Shawn Jyawook, May 2007
A comparative analysis of TPV vs. EPDM with respect to noise reduction is examined for automotive weatherstrip body sealing applications. Specifically, EPDM sponge is compared with JyFlexTM, a TPV compound of equivalent stiffness. The study is performed using multiple acoustic tests (road and component), supported by FEA analysis as a diagnostic tool [1].
The Position of High Shear Material and its Effect on the Progressive Weld Line Strength of an Injection Molded Part
Kevin A. Welsh, Jason B. Willis, May 2007
This paper presents the results of a study on weld line strength as affected by materials, injection velocity, distance from the gate, and the strategic positioning of high sheared melt laminate prior to weld formation.
Effect of a Polydimethylsiloxane -Modified Polyolefin Additive on the Extrusion of LLDPE
S.-H. Zhu, N.T. McManus, C. Tzoganakis, A. Penlidis, May 2007
A polydimethylsiloxane (PDMS) modified polyolefin (PMPO) was found to facilitate the extrusion of linear low density polyethylene (LLDPE). In comparison to pure LLDPE, the apparent viscosity is reduced, and the extrudate surface roughness only occurs at higher shear rates. The throughput per unit input energy in single-screw extrusion nearly doubles. These are attributed to the decreasing surface free energy of the PMPO with an increasing PDMS content. The friction coefficients of pure PMPO and PMPO/LLDPE blends decrease as a result of the presence of PDMS.
Strategies for Enhancing Cell Nucleation of Thermoplastic Polyolefin (TPO) Foam
S.G. Kim, J.W.S. Lee, C.B. Park, M. Sain, May 2007
There is a growing interest in developing foamed TPO since replacing solid TPO will reduce material cost and fuel usage. In this paper, various talc contents are added into a TPO matrix, consisting of PP blended with a metallocene-based polyolefin elastomer. The effect of talc on TPO foams blown with N2 is studied using the batch foaming simulation system. The influence of N2 content and processing conditions on cell nucleation behaviour is discussed.
Laser Transmission Welding of Polyamide Tubes to Plates
Bobbye Baylis, Paul Daly, Hans Herfurth, May 2007
A major technical hurdle to overcome in making an all-plastic heat exchanger is welding tubes to the base plates of tanks. A heat exchanger that must remove a large quantity of heat quickly requires a large number of tubes, usually closely packed. Various techniques to achieve this have been investigated. The materials for tubes and tank plates were all polyamides; various combinations of PA 66, PA 612 and PPA were studied. Data on successful laser welds are presented.
Fractionated Crystallization of ?-Nucleated Polypropylene Microdroplets Produced from Nanolayers
D.S. Langhe, Y. Jin, A. Hiltner, E. Baer, May 2007
Microdroplets of ?-phase polypropylene nucleated with the calcium salt of pimelic acid (Ca-Pim) and quinacridonequinone (QQ) were produced by layer breakup of Polypropylene (PP) / Polystyrene (PS) coextruded nanolayer films. These microdroplets were investigated using DSC and WAXD to study the effect of nucleating agent concentration and particle size distribution on fractionated crystallization. By using varying heating and cooling rates, the kinetics of crystallization of these microdroplets was studied.
High Heat Polycarbonates
Gary F. Smith, James Mahood, Matt Pixton, Adam S. Zerda, Mark A. Sanner, May 2007
A series of new high heat polycarbonate copolymers have been prepared and commercialized. These transparent resins extend polycarbonate heat capability beyond 200 oC while maintaining excellent melt processability, good mechanical properties and strength as well as practical toughness and flame resistance. In addition, the copolymers demonstrate useful optical properties including low birefringence and high refractive index, which may be useful in lighting and lens applications. The new resins may be blended with a variety of additives, such as fiberglass, to make a family of amorphous high heat resins.
Compressibilty of Resin, A New Look at Bulk Density
Adam J. Miloser, May 2007
The bulk density of a material greatly influences the total storage capacity in a silo. Although it has significant meaning, little research has been done in determining how compressive polymer materials are in their bulk states. The focus of this research is to investigate the changes in bulk density that occur with changes in pressure for several different polymer materials and determine the compressibility of these materials in the bulk state.
Analysis of the Stability of a Single-Screw Extrusion Process Using Graphical Analysis
John R. Wagner, Jr., Mark A. Spalding, Sam L. Crabtree, May 2007
This paper analyzes the barrel pressures and motor current data acquired using a high-speed data acquisition system. Graphical analysis shows the relationship between screw design and screw speed.
What Every Plastics Professional Should Know about Products Liability- Part 1: An Overview of Sources of Products Liability Claims
Amad Tayebi, May 2007
This article, particularly tailored to cover plastics materials products, provides an overview of the three major theories under which a products liability action may be initiated, namely; negligence, breach of warranty and strict products liability. Negligence liability claim elements of duty owed by the manufacturer, breach of duty, causation and damages are discussed. Also, discussed are claims brought under the theories of breach of warranty and strict products liability.
Polybutene-1: A Review of an Old Polymer Produced with a New Technology and its Application to Flexible Packaging
Omar M. Boutni, May 2007
Polybutene-1 is a polyolefin with unique characteristics which distinguish it from PE and PP. They include: low heat of fusion, shear thinning, creep resistance and an intriguing polymorphic structure. Compatibility of PB-1 with PP and immiscibility with PE are often exploited to create convenient packaging which is easily opened by the consumer. This paper will review examples of the use of PB-1 in such applications and in the modification of the sealing initiation temperature of films.

This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.

  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net