The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.
The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?
Unlike other materials, the number of polymeric materials and material combinations with polymers grows rapidly. Consequently, design opportunities daily arise but not all of them may be reconized instantly. Some opportunities are discovered by chance. A short review is presented about past design opportunities and when they were reconized, as well as a vision on design opportunities of some current developments, such as various types of new copolymers compatibilized blends, polymeric semiconductors and nano-structured materials.
This paper focuses on the key criteria to achieve high performing rotationally molded plastic articles. The rotomolding process as well as the final applications lead to the highest requirements for pigment and additive selection. An overview is given on possible critical steps in the whole production cycle and in detail the influence of the pigment selection on the processing and end-use quality is described. On a practical example, where extreme weather resistance is required, it is demonstrated how to transform this knowledge into an integrated solution for the Industry.
Long glass fiber (LGF) reinforced resins have established a strong presence in the injection molding industry. Optimising the mechanical properties requires control of fiber orientation during molding. CAE simulations have proven beneficial in mold design; however these simulations depend on the quality and relevance of the rheological properties. The flow behaviour of LGF grades measured in a variety of rheometric geometries is presented.
Peter S. Cook, Huagang Yu, Clinton V. Kietzmann, Franco S. Costa, May 2005
Experimental data are presented for a multi-cavity molding which show a significant flow imbalance despite a geometrically balanced feed system. The degree of the imbalance between inner and outer cavities depends on the injection rate and is also found to change as filling progresses. Three dimensional computer simulations have successfully predicted these trends and provide an understanding of the behavior in terms of shear heating and laminar convection.
Xiaoshi Jin, Paul Brincat, Baojiu Lin, Zhongshuang Yuan, May 2005
Interfacing mechanisms between specially designed tools for both analyzing the injection molding process and automating machine setup of the process are presented in this paper. We use examples to show that the interface is an effective way to communicate between the two tools and so benefit both analysts and manufacturers by achieving process conditions that are both consistent and based on scientific principles.
The paper will focus on explaining some of the fundamental techniques of multivariate analysis (principal component analysis) and show examples on how such techniques can facilitate use of rheological measurements in offline and online QC of polyolefin manufacturing.
A pioneering system of interrelated algorithms— which integrates prior art techniques from the fields of correlation, regression, mapping, statistics and decision-making— has led to breakthrough insights into plastic injection molding processes. This new technology accelerates time-to-market, increases quality and reduces cost and risk during development. It increases quality and greatly reduces measurement, SPC analysis and Cpk analysis costs during production. Changes to tooling, targets and tolerances can be simulated without incurring cost, time or risk.
Chaur-Kie Lin, Shu-Hwang Chen, Horng-Yith Liou, Chieh-Chih Tian, May 2005
The study uses a fixed amount of ABS as matrix, mixed with supercritical fluid (N2) in different proportions, in order to obtain foamed ABS. The resulting product of the above is a structured foamed ABS, by which to research into the MuCell process. The results of the study indicate that increasing the amount of the blowing agent will obviously improve the warpage and shrinkage, but this will also decrease the strength of tensile and impact.
A scanning infra-red thermal imager is used to continuously measure extrudate temperatures in an extrusion coating process. Position dependent and time dependent process variables are recorded and can be used for process improvement. Before and after images are shown and discussed with corresponding machine and process modifications.
Anthony R. Cooper, Doris S. Leung, Les M. Fisher, Douglas E. Shook, David L. Harlow, Nicholas J. Lecheler, May 2005
A commercial terpene-based cleaning solvent has been found to contain a significant amount of non-volatile residue. This non-volatile residue has been isolated and characterized. DSC has shown that the material is capable of exothermic reaction at ~ 150°C. Additional analytical techniques, FTIR, GPC and viscometry have been used to further characterize the reaction. Tensile and double lap shear test specimens were prepared and used to characterize the bond strength. The rate of reaction was found to depend significantly on the availability of air. Arrhenius activation energies were obtained from mechanical test data results. Under the most severe reaction conditions used the adhesive material did not crosslink. Removal of the adhesive residue was possible using solvents, such as isopropanol.
K.K. Botros, J. Geerligs, J. Marler, B. Rehlau, May 2005
This paper presents a simple technique to suppress a high level single-tone sound pressure generated from the air ring of a large polyethylene film blowing machine when operating close to its high output range. SPL suppression obtained was in the order of 27-29 dBA. Analysis showed that the shallow cavity created between the adjustable chimney inner geometry and the fixed chimney of the upper air ring is responsible for a discrete tone noise around 119 dB. Two positions of the adjustable chimney were found to be responsible for this high single-tone noise. The suppression technique was based on a perforated sliding collar placed around the chimney, which has the effects of reducing the initial perforation on the adjustable chimney.
Cooling system design is important in mold designs to achieve short cycles, dimensional stability and reduced part stresses. Traditionally, cooling lines have been machined into mold components to avoid interference with the ejection system, coring and other mold details. Efforts have also been made to create turbulent flow in these lines to maximize heat transfer. Over the years straight cooling lines have given way, in part, to conformal cooling techniques often using free form fabricated mold components. The author has taken conformal cooling to the next level. In this concept, cooling is accomplished by designing various shapes of cooling channels. These channels control the heat exchange medium flow direction and flow rate in order to extract the proper amount of heat from the mold where it is needed. This is demonstrated by laboratory results from experiments utilizing various cooling design concepts in a standard part.
Melting rate calculations have been shown in the literature to be strongly effected by the temperature dependent effects (flow activation energy) of polymer viscosity, especially for amorphous polymers1. And this is an important factor in explaining the poor model results for polymers relative to semicrystalline polymers observed in the literature2. Over the years a great number of changes in catalyst systems have occurred in the polymerization of “standard” polymers such as polypropylene and polyethylene. These new catalyst systems have appreciable changed the temperature response of the polymers which can have a significant impact on melting rate calculations. This paper will examine the cause of many melting models general failure with amorphous polymers in relationship to existing experimental melting rate calculations which clearly highlight the importance of the temperature sensitivity of the viscosity to accurate melting rate calculations.
This investigation focuses on the inherent recyclablility of a polypropylene homopolymer by characterizing the mechanical and rheological properties of a multiprocessed resin. The investigation studied molded samples both with and without the presence of a weld line. Several blends of virgin and reground polypropylene homopolymer (consisting of 5 recycle histories) were prepared. The tensile properties (including weld strength) and melt flow rate tests were performed on all molded samples from each of the blends.The results of the study showed that regrind did not affect the tensile modulus, tensile strength at yield, or elongation at yield for samples molded without the weld line to any significant degree. The presence of a weld line had a negative effect on the mechanical properties of the molded sample. The weld line strength also decreased significantly as regrind concentration increased. Melt flow rate tests of the various blends showed the melt flow rate increased by a total of 29% over the entire range of regrind percentages studied. Increasing the processing temperature did have a positive effect on the weld line strength. The addition of regrind did not affect the first stage injection pressure or cavity pressure observed during the molding of the test samples.
Polymer materials offer a wide range of properties that can be chosen according to the functional necessities. Therefore these materials are increasingly often used for decisive elements in micro systems. Injection molding as a production process for polymer materials can also be applied as a joining and assembly process in addition to generating micro parts. This approach offers a high potential for micro technology, since an offline joining process can be avoided by overmolding of the components, where it is possible to generate movable and force fit connections. New research at IKV (Institute of Plastics Processing) shows progress made in the attainable bond strength of hybrid micro systems. A specific testing method for different material combinations has been developed. Since plastics/metal bonds possess little adhesion, surface modifications such as increased surface roughness or silane coating show promising results.
Polypropylene and polyethylene were terminally functionalized with anhydride groups through a two-step solution catalytic hydrosilylation reaction. Subsequently, the anhydride group in the functionalized polymers was reacted with 1,6-diaminohexane following an imidation reaction to produce primary amine functionalized polymers. The anhydride functionalization of polyethylene was also carried out in molten state. The functionalized products were characterized by FT-IR and an acid-base titration method, and attempts to prevent crosslinking of polyethylene and the application of the novel anhydride functionalization technique in extruders are discussed.
The concept of a novel suspension polymerization technology without mechanical agitation is presented. It aims to yield a practically monosized product, allows the inclusion of a variety of components in the polymer matrix with a potential for broader range of products, compared to a conventional stirred-tank process. The technology is comprised of two stages: dispersion of an organic phase into droplets with the required size, and the subsequent polymerization of the droplets, while preserving their initial size distribution. The dispersion method combines pressure atomization of the organic phase below free surface of a stabilizing continuous phase, with the controlled pressure pulsation imposed on the flowing stream, and yields mono-sized droplets for both Newtonian and Non-Newtonian viscoelastic liquids. The atomized droplets are next polymerized in low shear, low turbulence flow pattern created within the continuous phase, by injecting an inert immiscible gas at selected reactor locations. The process was validated on lab-scale; the results are presented and discussed.
Polypropylene and its variants by far offers the best balance of cost and performance for wide range of applications requiring flexibility, toughness, rigidity, heat and chemical resistance. However, one major drawback of PP is its low melt strength, which limits its use in blow-molded, thermoformed and extruded and injection molded low-density foams. During last decade, various PP grades with improved melt elasticity have been introduced to overcome this drawback. However, in neat form processors find these HMSPP difficult to process and expensive. This paper describes various approaches to impart high melt strength to PP. It is shown that blending 10-30% of HMSPP with linear PP produces significant and unexpected benefits.
The demand for large parts with thick wall, constructed of multiple polymer layers, along with the desire for quick turn around time, lower tool cost, and low pressure processing is making thermoforming very attractive over injection molding. In spite of the long history, thermoforming is still very much an art than science. There are very few reliable tests available to processors and researchers for analyzing and quantifying thermoformability. This paper presents comparison between current methods and a novel test apparatus, which closely simulates thermoforming process under controllable conditions while collecting quantitative information, which can be used to assess, compare, optimize or predict thermoformability of test material.
Omar Augusto Estrada, María del Pilar Noriega, Iván Darío López, Whady Felipe Flórez, May 2005
This paper describes the collocation method with radial basis functions (RBFCM) of the 2D energy equation for Newtonian and non – Newtonian fluids, These fluids are widely used in polymer processing in various processes like extrusion, blow molding, and injection molding. The 2D energy equation involves specially the variation of the thermal properties with temperature and the viscous dissipation term. The boundary conditions are of Dirichlet, Neumann and Robin Type. The accuracy of the solution is assessed by comparison with well known analytical solutions and numerical procedures, such as, benchmark test, found in the literature. The problem of the fluid between the two parallel plates is completely simulated using RBFCM. It is clear the accuracy of the RBFCM solution assessed by comparison with the analytical solution and the DRBEM numerical solution.
84 countries and 60k+ stakeholders strong, SPE
unites
plastics professionals worldwide – helping them succeed and strengthening their skills
through
networking, events, training, and knowledge sharing.
No matter where you work in the plastics industry
value
chain-whether you're a scientist, engineer, technical personnel or a senior executive-nor
what your
background is, education, gender, culture or age-we are here to serve you.
Our members needs are our passion. We work hard so
that we
can ensure that everyone has the tools necessary to meet her or his personal & professional
goals.
Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:
Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.
Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.