SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library

Sort By:  Date Added   Publication Date   Title   Author

Conference Proceedings

The Effect of Calcium Carbonate Size and Loading Level on the Impact Performance of Rigid PVC Compounds Containing Varying Amounts of Acrylic Impact Modifier
William S. Bryant, Henry E. Wiebking, May 2002

This study demonstrates how the impact performance of a rigid polyvinyl chloride (PVC) compound can be affected by the particle size of the calcium carbonate filler and its loading level. The test compounds contain 0 to 8phr of acrylic impact modifier and fillers ranging in size from 3 to 0.07 microns. By taking all three variables into consideration one can, not only optimize a compound's performance, but also lower its cost. Notched Izod and falling weight impact data will be reviewed. Flexural modulus and low temperature impact data are also included.

The Effect of Carbon Dioxide on the Viscoelastic Properties of an Epoxy Resin: CO2 Pressure Jumps
Francesco Briatico-Vangosa, Mataz Alcoutlabi, Gregory B. McKenna, May 2002

We report results from tensile creep tests performed on an epoxy resin in the presence of carbon dioxide pressure (Pco2) at a constant temperature below the glass transition temperature Tg. Time - Pco2 superposition was applied to the data to account for the plasticization effect due to the interaction between the carbon dioxide molecules and the polymer. In addition, physical aging of the epoxy films was investigated using sequential creep tests after carbon dioxide pressure down-jumps at constant temperature and also after temperature down-jumps at ambient carbon dioxide pressure. The isothermal pressure down-jump experiments showed physical aging responses similar to the isobaric temperature down-jump experiments. However, the aging rate for the CO2–jump was lower than that for the T-jump.

Effect of Chemical Modification on Polyolefin Crystalline Structures
N. Villarreal, J.M. Pastor, R. Perera, C. Rosales, J.C. Merino, May 2002

A thermal treatment of Successive Self-Nucleation and Annealing (SSA) of LDPE, LLDPE, PP, PP grafted with diethyl maleate and PP grafted with maleic anhydride were made. The study of these materials was combined using capillary rheometry, DSC measurements, FTIR and Low-Frequency Raman-Active Longitudinal Acoustical Mode (LAM). The results indicated that the grafting process mechanism in a co-rotating twin-screw extruder and their effects on the polyethylenes structures occur through secondary carbons. The SSA technique is a useful tool for the characterization of grafted PEs. However, more work is needed for the grafted MA polypropylenes.

The Effect of Cure Conditions on the Mechanical, Shore Hardness and Frictional Properties of Styrene Butadiene Rubber for Industrial Conveying Applications
G.M. Mc Nally, J.L. Clarke, C.M. Small, W.J. Skelto, V. Monroe, May 2002

A range of samples were prepared from a commercial styrene butadiene rubber (SBR), over a range of cure temperatures (140°C – 170°C) and cure times (30min – 120min), using a high temperature moulding press held at a constant pressure of 5000 psi. Mechanical analysis of the various samples showed considerable increase in modulus, shore hardness and break strength with progressive increase in cure temperature, especially at lower cure times. Dynamic frictional analysis under different loadings, of the SBR samples with HMWPE and 90 Shore A Polyurethane (PU), showed progressive decrease in frictional force with increase in SBR cure temperature and time. Some reversion of the SBR was shown to occur at higher temperatures and longer cure times.

Effect of DCP Crosslinking on the Mechanical and Electrical Properties of LDPE
M. Rafizadeh, S. Mohseni, May 2002

The good electrical and mechanical properties of low density polyethylene (LDPE) make it an ideal insulation for the electric cables. The main draw back of polyethylene is its softening temperature. Crosslinking of polyethylene improves its properties.The effect of dicumyl peroxide (DCP) on mechanical, thermal and electrical properties of crosslinked polyethylene (XLPE) have been investigated. Crosslinking of LDPE improves its mechanical properties and, to some extent, improves its thermal degradation. DCP increases dielectric breakdown voltage, elongation at break, tensile strength and gel-content of XLPE, but decreases young modulus, crystallinity, heat of fusion and melting point of XLPE.According to the results, an optimized amount of DCP is determined. In this study, the LDPE (POLIRAN LF0200) was used to produce insulators for medium and high-voltage electrical cables.

The Effect of Extrusion Processing Conditions and Polyisobutylene Concentration on the Properties of Polyethylene for Stretch and Cling Film Applications
C.M. Small, G.M. Mc Nally, A. Marks, W.R. Murphy, May 2002

A range of LLDPE films with polyisobutylene (PIB) content from 2%-8% was manufactured using a Killion blown film extrusion system and a cast film extrusion system. The films were aged at 25, 35 and 45°C for up 28 days, to enable tack (cling) development. The results show that tack, in both blown and cast films, improved significantly with ageing, at increased storage temperatures and at higher film blow up ratios. DSC analysis showed only a slight decrease in film crystallinity with increasing PIB concentration. The film tensile modulus, elongation and tear properties in both MD and TD were not significantly affected by increase in PIB concentration.

The Effect of Extrusion Processing Conditions on the Thermal and Mechanical Performance of Extrusion Cast Metallocene Polyethylene Films
B.G. Millar, G.M. Mc Nally, W.R. Murphy, May 2002

Cast extruded films were prepared from a range of mPE resins with various co-monomer types (hexene, octene), using different chill roll temperatures from 30 to 60°C. Mechanical analysis showed that the tensile modulus of the films increased with progressive increase in chill roll temperature. DSC analysis showed increases in crystallinity with increasing quench temperature and decreasing MFI. Rheological and molecular weight distribution analysis showed that activation energies of flow for mPE (18-28kJ/mol) were low, this is attributable to the narrower polydispersity of mPE (2.1-3.1) compared to the wider distribution of conventional polyethylenes (4.0-5.0).

Effect of Fluoropolymer Processing Aids on the Processibility of an Octene LLDPE
Kasinath Nayak, Mohan Gownder, Glen Giacoletto, May 2002

Polymer processing additives (PPA) have found their niche in the extrusion and processing of polyolefins, especially to improve their processing characteristics. It has been known that PPA can be used in the range of 100 – 1000 ppm to eliminate surface defects including melt fracture and gels, as well as to reduce die build up. The main focus of this paper is to determine the effect of various fluoropolymer processing aids in the elimination of melt fracture of an octene linear low density polyethylene. Also the influences of both antiblocking agent and slip additive on the performance of PPA are assessed.

Effect of Functionalized Polyolefin Coupling Agent Types on the Mechanical Properties of HDPE/Wood-Flour Composites
Qingxiu Li, Laurent M. Matuana, May 2002

The performance of fiber reinforced thermoplastic composites strongly depends on solid fiber-matrix adhesion to allow stress transfer between the phases. Fiber surface modification with coupling agents is generally needed to induce bond formation between the fiber and the polymer. This study investigated the effects of coupling agent's functional monomer (acrylic acid vs. maleic anhydride) and base resin (polyethylene vs. polypropylene) types on the on the tensile and flexural properties of high-density polyethylene (HDPE)/wood-flour composites. The experimental results indicate that the types of functional monomer and base resin are important factors determining the effectiveness of functionalized coupling agents for HDPE/wood-flour composites. Maleic anhydride-functionalized polyolefins perform better than acrylic acid counterparts whereas polyethylene-based maleated coupling agents are more effective than polypropylene-base counterparts in improving the mechanical properties of HDPE/wood-flour composites.

Effect of Gamma-Irradiation on the Mechanical Behavior of PS/PP Blends
C. Albano, J. Reyes, M. Ichazo, J. González, M. Hernández, M. Rodríguez, May 2002

The effect of Gamma-irradiation on the tensile behavior of PS/PP blends (80/20) and its mathematical analysis indicates that the blend presents a high radiation resistance to low doses (80-70 kGy), since mechanical properties present no significant changes; this is due to the presence of the aromatic ring in the PS structure, factor which was confirmed by the lineal mathematical adjustment. On the other hand, at high doses of irradiation (70-1300 kGy), a dramatic change on the mechanical properties was observed and the mathematical adjustment showed a third order polynomial behavior, which indicates a competition between crosslinking and degradation mechanisms, being the latter predominant.

Effect of Gas-Transmission Property in Modified Atmosphere Packaging for Fresh Produce
Shin Kahata, Masao Karouji, May 2002

Changes of gas concentrations inside a package were studied using several kinds of materials in Modified Atmosphere Packaging (MAP) for Fresh produce. Respiration rates of Shiitake mushroom as Fresh produce and gas-transmission rates of these materials were measured and predicted at various temperature.Changes of gas concentration inside a package were simulated using a Michaelis-Menten type equation model and material's gas transmission rates. Suitable packaging material in Modified Atmosphere Packaging was discussed from the viewpoint of it's gas-transmission rates."

The Effect of High Barrier Emulsion Polymers on the Reduction in Water Vapour Transmission Rates of Laminated Carton
S. Lendrum, N.M. Ryan, G.M. McNally, May 2002

The water vapour transmission rate (WVTR), or moisture vapour transmission rate, of carton boards can often be critical, especially in high performance packaging applications. A range of laminated two-ply carton boards were prepared using litho-lamination techniques. These boards were manufactured using a range of polymer based emulsions and adhesives. Different carton board materials and polymer/adhesive layer thicknesses were used during this investigation.The WVTR of these carton boards were measured using a MOCON Permatran automatic water vapour permeability analyser at 60% relative humidities (RH) and at 20°C temperature. The results show significantly lower WVTR with the EVOH based emulsion than with the other polymer based emulsions and the adhesives.

Effect of High Density Polyethylene Concentration and Melt Temperature on Crystalization Dynamics during Film Blowing of Linear Low Density Polyethylene
G.A. Campbell, O.Y. Alothman, M.D. Bullwinkel, May 2002

The crystallization of low density Polyethylene is investigated relative to the influence of small, up to 4 wt.%, of high density PE at different melt temperatures. The process was evaluated by the use of simultaneous on-line SALS (Small Angle Light Scattering) and IR (Infrared) temperature measurements to study structure development as influenced by nucleation during tubular blown film extrusion of LLDPE. As the concentration of the nucleation aid, HDPE, was increased, the observed scattering intensity was decreased probably due to impingement and truncation of spherulites. The effect of melt temperature was also investigated and the scattering intensity increased as the temperature increased as a result of lower internal disorder.

The Effect of Internal Cooling on Fingering in the Gas-Assisted Injection Molding
Jun Seok Lee, Sooyoung Cha, Francis Lai, May 2002

A new approach of liquid cooling of gas channel in the gas-assisted injection molding process was adapted in the development and investigation of a water injection system. The gas channel was used as an internal cooling by a liquid injection to increase the process efficiency.The major goal for this study is to minimize the fingering region by introducing the water in the conventional gas-assisted injection molding system. The gas penetration length and the gas fingering area were reduced with increase of the amount of water. The decrease of the penetration length is an undesirable effect and reduces the productivity. The gas injection pressure and the amount of water should be balanced to obtain the optimal part quality.

Effect of Mold Size on the Average Density and Density Gradients in a Polyurethane Foam System
Brendan O’Toole, Michael Mullin, Michelle Cameron Nelson, Dacia Jackovich, Robert Mohan, May 2002

Polyurethane foam is often molded directly in place as a thermal or vibration insulator, energy absorbing material, or core material for a sandwich structure. During the foaming process a smooth thin skin forms between the mold and the interior cellular structure of the foam. This thin skin is only part of a density variation within the cellular structure. This paper examines the effects of mold type on the density gradient. A general trend was found within three mold types; samples taken from the center were less dense than those taken near the mold side. From the center outward, all three molds exhibited a density increase in the form of a power curve. Another general trend was discovered within all three mold types; samples taken from the top section were less dense than those taken from the bottom section of the molds. It was also shown that as the mold size decreased, the vertical density gradient decreased.

The Effect of Molecular Structure on the Coalescence of Ethylene/?-Olefin Copolymers
S.A. Guillén-Castellanos, C.T. Bellehumeur, M. Weber, May 2002

An experimental study on the coalescence of polymer particles has been conducted on ethylene/?-olefin copolymers. Experimental evidence suggests that copolymers with a more homogeneous structure generally coalesce faster than their heterogeneous counterparts. In a few cases, however, the presence of some heterogeneities in the molecular structure seemed to be beneficial to the coalescence process. A controlled level of heterogeneities, while not significantly impacting the relative elasticity of the material, affected the thermal properties of the material in a favorable way.

The Effect of Molecular Weight and Polydispersity on the Rheological Properties of Pigmented Polypropylene
A.F. Marks, G.M. McNally, W.R. Murphy, P. Orr, May 2002

The rheological characteristics of a range of pigmented polypropylene (iPP) of different MFI values and molecular weight distributions, were investigated using dual capillary rheometry techniques, over the temperature range 190°C to 230°C and shear rate range of 10s-1 to 800s-1 . The various iPP resins were compounded with pigment masterbatch concentrations ranging from 0.2% to 3.0%, using a 38mm Killion compounding line. The pigment masterbatches investigated were iron oxide, titanium dioxide and phthalocyanine blue. The rheological data, showed that there were considerable increases in apparent viscosity of pigmented iPP even at relatively low pigment loadings. Calculation of the non-Newtonian index (n) from the rehological data, also showed the iPP with the narrower polydisperty were less shear thinning than the wider molecular weight distribution polymer resins, especially at the lower shear rates. Activation energies (Ea) calculated from the rheological data showed large increases in Ea especially for wide molecular weight distribution pigmented iPP resins, and compared favorably with crystallinity developed in the polypropylene during the low shear compounding process.

Effect of Molecular Weight on Mechanical and Morphological Properties of High Density Polyethylene Foams
Yaolin Zhang, Abdellatif Ait-Kadi, Denis Rodrigue, May 2002

Morphological and mechanical properties of linear polyethylene (HDPE) foams were investigated as function of polymer molecular weight and blowing agent concentration. The objective of this systematic study was to understanding the effect of polymer molecular weight via rheology on the final morphology of the foams. Shear and elongational properties of linear polyethylenes with a wide range of molecular weights were first measured using, respectively, a rotational rheometer (Bohlin CVO) and an elongational rheometer (RME). Azodicarbonamide (ACA) was used as the chemical blowing agent and concentrations between 1 and 3 wt% were used to produce HDPE foams. We present here the morphology of the foams and their tensile mechanical properties. The results are discussed in terms of the rheological properties of the polymer matrix which is related to their molecular weight.

Effect of Multiple Processing Cycles on Post-Consumer Plastics Recycled via Solid-State Shear Pulverization
Klementina Khait, Erin G. Riddick, John M. Torkelson, May 2002

It is well known that reprocessability of plastics is essential during both manufacturing and consequent recycling. Post-consumer materials, and in particular a five component blend of high- and low-density polyethylene, polypropylene, polystyrene, and polyvinyl chloride representing American film waste, have been successfully reprocessed multiple times by solid-state shear pulverization on a laboratory scale pulverizer. A processing cycle included pulverization, injection molding and conventional grinding. Physical properties such as notched Izod impact strength, elongation at break and flexural properties remained unchanged after four cycles. No change in color or surface appearance of the injection molded test specimens was observed.

The Effect of Natural Rubber Crosslink Density on Real Time Birefringence, True Stress and True Strain Behavior
D. Valladares, M. Cakmak, May 2002

The effect of crosslink density on the strain-induced crystallization behavior of uniaxially stretched sulfur-cured Natural Rubber vulcanizates was investigated. For this purpose, we measured the local strain and local birefringence in real time during deformation using the instrumented stretching machine developed in our group. In addition to the stress-strain-birefringence data, the evolution of the crystalline order at selected states of orientation as a result of strain is analyzed by WAXS measurements. The results show a continuous increase of molecular orientation as the rubber is stretched. The data also indicates a critical structural threshold beyond which crystallization suddenly takes place. After this threshold value, the relaxation stage also involves further crystallization. The crosslink density greatly affects the molecular orientation process and crystallization during stretching and will be discuss in detail in this paper.

  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net