The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.
Important Update: SPE's Technical Library Is Evolving The SPE Technical Library will be retired on September 15, 2025, as we transition to Polymer Insights—a powerful, AI-driven platform designed to transform how plastics professionals access and apply technical knowledge. Polymer Insights delivers answers and insights to your questions that are sourced entirely from SPE-curated content, including decades of peer-reviewed research, technical papers, and industry expertise. This new tool goes beyond search—providing intelligent, contextual results tailored specifically to you.
Open Access Preview: July 17–20, 2025
Be among the first to explore! From Thursday, July 17 through Sunday, July 20, Polymer Insights is open to all — no login required. Try it at www.polymerinsights.ai.
After July 20: Premium Members Only!
Don’t let this level of access end with the free trial!Starting on Monday, July 21, Polymer Insights will be exclusive to SPE Premium Members. Join SPE as a Premium member to keep unlimited access to this revolutionary tool!
Klementina Khait, Erin G. Riddick, John M. Torkelson, May 2002
It is well known that reprocessability of plastics is essential during both manufacturing and consequent recycling. Post-consumer materials, and in particular a five component blend of high- and low-density polyethylene, polypropylene, polystyrene, and polyvinyl chloride representing American film waste, have been successfully reprocessed multiple times by solid-state shear pulverization on a laboratory scale pulverizer. A processing cycle included pulverization, injection molding and conventional grinding. Physical properties such as notched Izod impact strength, elongation at break and flexural properties remained unchanged after four cycles. No change in color or surface appearance of the injection molded test specimens was observed.
The effect of crosslink density on the strain-induced crystallization behavior of uniaxially stretched sulfur-cured Natural Rubber vulcanizates was investigated. For this purpose, we measured the local strain and local birefringence in real time during deformation using the instrumented stretching machine developed in our group. In addition to the stress-strain-birefringence data, the evolution of the crystalline order at selected states of orientation as a result of strain is analyzed by WAXS measurements. The results show a continuous increase of molecular orientation as the rubber is stretched. The data also indicates a critical structural threshold beyond which crystallization suddenly takes place. After this threshold value, the relaxation stage also involves further crystallization. The crosslink density greatly affects the molecular orientation process and crystallization during stretching and will be discuss in detail in this paper.
P.M. McShane, G. McNally, T. McNally, W.R. Murphy, M. Cook, A. Miller, May 2002
Thermoplastic elastomers (TPEs) based on 65 wt. % ethylene-octene copolymer (EOC)/ 35 wt.% polypropylene (PP) plasticised with two paraffinic oils of different viscosities and a naphthenic oil, were prepared using a twin screw compounder. The oil content of the thermoplastic elastomers ranged between 10 and 20 wt.%. Rheological characterisation of these blends was studied over the shear rate range of 30 to 1000 sec-1. The apparent viscosity at temperatures 197 to 237 °C was shown to be dependent on the quantity rather than type of oil. The tensile modulus, impact strength decreased and elongation at break increased with increase in oil content. The compatibility of each plasticiser was studied by measuring the change in glass transition temperature, melting point of PP phase, and enthalpy of melting of each polymer component.
The use of plastic products is becoming more prevalent in society. Scrap from plastics processing is reground and reused by plastics manufacturers. When the percentage of reground plastic becomes higher than 30% a decrease in mechanical properties is seen. No research has currently been found to encourage runner, vent, or gate modifications to enable manufactures to use a higher percentage of recycled material. The objective of this investigation determine if pin point, standard, or fan gates have an effect on the molecular orientation of virgin, 30%, and 80% recycled PET. Molecular orientation can be evaluated by performing mechanical property testing such as yield strength, tensile modulus, percent elongation, and hardness testing. Tensile bar inserts will be machined with pin point, standard, and fan gate styles. The resulting bars will be subjected to the mechanical tests of yield strength, tensile modulus, percent elongation, and hardness. By using a 2k factorial designed experiment, the results will be analyzed to determine which, if any, gate causes the mechanical properties of the recycled plastic to be similar, within 10%, of the virgin material.
L. Shultz, P.J. Bates, J. MacDonald, H. Liang, May 2002
Much previous work has been done to assess the effect of material, geometric and vibration welding parameters on weld strength. This study examines a series of part parameters and their effect on the joint strength and meltdown-time profiles. These parameters include the plate temperature before welding, edge conditions (cut or molded), initial glass fiber orientation, thickness and injection molding conditions. 33% glass reinforced nylon 66 was used in this study. Plates were molded and then butt-welded on a laboratory linear vibration welding machine. The meltdown-time profiles and the tensile strength of the butt weld were measured for each sample.
T.S. Valera, A.P. Ribeiro, F.R. Valenzuela -Díaz, A. Yoshiga, W. Ormanji, S.M. Toffoli, May 2002
Phyllites are abundant methamorphic rocks composed by fine particles of clay minerals and quartz. This paper investigates the use of a Phyllite from Itapeva, SP, Brazil, as a filler for PVC plastisols and compared the properties of the obtained plastisols with the ones obtained for plastisols containing calcium carbonate, the usual industrial filler. Four different formulations were prepared. The pastes were tested for their Brookfield viscosities, gellation and melting temperature and plate-plate rheology. Films were laminated at 180ºC and tested under tensile stress and for heat stability. PVC plastisols containing phyllite exhibited better mechanical properties and acceptable viscoelastic properties.
P.R. Hanna, G.M. McNally, I. Major, M.P. Kearns, May 2002
Polypropylene (iPP) is increasingly being used in products for elevated temperature applications. The morphological development during processing of this semi-crystalline polymer is known to be dependent on processing conditions and the presence of nucleating agents such as pigments, influencing both mechanical and thermal properties. A range of injection moulded samples was manufactured from iPP containing 0.1 - 2.0% pigment loadings of different pigment types, using different mould cooling conditions. DSC, tensile and thermal analysis of the various samples showed significant increase in both crystallinity and tensile modulus with a decrease in impact strength for both increased pigment loadings and mould temperatures.
P.M. McShane, G. McNally, T. McNally, W.R. Murphy, M. Cook, A. Miller, May 2002
Blends of polypropylene (PP) of MFIs 4 and 25 g/10 min with up to 30 wt. % ethylene-octene copolymer (EOC) were prepared using a Killion compounding extruder fitted with a barrier design screw. Rheological characterisation of these blends was studied over the shear rate range of 300 to 2000 sec-1. The apparent viscosity at temperatures 197 to 237 °C was shown to be dependent primarily on the MFI of the PP rather than the EOC concentration of the blend. The MFI had a significant effect on the mechanical and phase morphology properties of the various blends. Dynamic mechanical thermal analysis (DMTA), and differential scanning calorimetry analysis (DSC) would tend to indicate some degree of polymer miscibility especially at the higher EOC concentrations, with slight decreases in crystallinity and the phase transition temperature of EOC.
J. Prasannakumar, P. Ghogomu, R.E. Nunn, N.R. Schott, M. Fiddy, K. Dyer, M. Dugan, S. Jones, May 2002
The purpose of this study was to evaluate the effects of injection molding conditions on the appearance of a weld line/flow line in injection molded parts incorporating pearlescent pigments. In this study, a general-purpose grade polypropylene was the carrier resin used. Three different pearlescent pigments were mixed into the polypropylene at concentrations by weight of 0.5%, 1.0% and 2.0% and injection molded. The appearance of a flow line for each of the concentrations was characterized by a transmitted light intensity method for various settings of the main molding parameters, melt temperature, mold temperature, holding pressure and injection speed.Overall, the experimental results indicated that melt temperature and injection speed most significantly affected flow line appearance. The mold temperature had a less significant effect, and the holding pressure did not have significant effect on the appearance on the flow line.
Zeynep Ergungor, Miko Cakmak, Celal Batur, May 2002
Nylon 6/montmorillonite nanocomposites were melt-spun at extrusion temperatures of 230º, 240º and 250ºC. The resulting fibers display interesting features in differential scanning calorimetry scans: an exothermic peak just below the melting region and at least three melting peaks depending on the spinning temperature. The presence of nanoparticles was found to limit spinning speeds due to premature fiber breakup. Increasing melting temperature from 230º to 250ºC alleviated this problem. The spun fibers were found to possess ? crystal form. At higher take-up speeds ?-crystals begin to appear in the mixture. The orientation levels in crystalline regions were found to be quite substantial due to the presence of nanoparticles that increases the overall viscosity and the spinline tension.
A.L. Kelly, M. Woodhead, P.D. Coates, P. Allan, R. Evans, May 2002
Experimental studies have been carried out to assess the effect of using an advanced tool temperature management system for injection moulding, compared to conventional tool heating and cooling techniques. A highly instrumented 75 tonne servo-hydraulic moulding machine was used, moulding tensile test specimens from HDPE. Tool temperature was monitored at high frequency (50 Hz) during each cycle, as was nozzle melt pressure, temperature and screw position. Conventional tool temperature control was employed using a water heater/chiller to control temperature in both halves of the tool by controlling water temperature. The effect of tool temperature control on start-up times, process and part repeatability has been examined.
D. Dixon, A.A. Crangle, R. McIIhagger, R. Edwards, May 2002
This paper assesses the effect of sealing parameters, (time, temperature and pressure) on the peel properties and fracture mechanism of medical packaging materials. A design of experiment (DOE) methodology was adopted to conduct the trials and analyze the results; the materials studied were a heat-sealable coated Tyvek® bonded to film (of the types used to manufacture pouches).The properties of the peelable seal were characterized in terms of peel strength parameters and fracture mechanism. A novel method to quantify fracture mechanism, by measuring the amount of adhesive transfer with predictive capability is presented. A window of seal time, temperature and pressure exists which results in the optimum peel properties and fracture mode.
The present study investigated the effects of surface treatment on the surface properties of calcium carbonate and on the interfacial interaction between filler and matrix. An extensive comparison was made on the efficacy of the surface treatment between stearic acid, a non-reactive surfactant, and LICA 12, a reactive coupling agent. The change in surface properties due to surface treatment was characterized through inverse gas chromatography (IGC) at infinite dilution. The stearic acid treated filler showed lower dispersive and polar components of the surface energy than LICA 12 treated system for completely coated CaCO3 fillers. Infrared analysis demonstrated that stearic acid reacted extensively with the filler surface to produce organic salt compound. Izod impact strength was measured on sharp-notched samples. It was found that stearic acid treated composites exhibited greater impact strength than LICA 12 treated systems.
Significant shear induced filling differences are commonly seen between cavities in multi-cavity injection molds. These filling variations can be particularly important when over-molding TPEs on delicate plastic inserts. This paper compares the amount of imbalance detected when molding different grades of TPEs. It then evaluates the relationship of the materials shear, temperature, and viscosity indexes on the magnitude of shear-induced mold filling imbalances to determine which factors most directly influence this imbalance. This understanding will help a molder more readily predict and address the problem. Furthermore, the study evaluates the use of melt rotation technology (1) to minimize the imbalances.
Foaming of low density poly(ethylene-co-octene) resins by injection molding is the result of various reactions occurring during the process. This includes simultaneous decomposition of the chemical blowing agent and cross-linking of the polymer matrix during curing in the mold, followed by foaming after mold opening. Dynamic rheology as well as elongational viscosity were investigated for compounds prepared from resins with different MFIs and various cross-linking agent levels, and these results were linked to the morphology and density of the corresponding foams. Rheological requirements were finally defined quantitatively for this set of conditions.
Prashant A. Bhadane, Basil D. Favis, Michel F. Champagne, Michel A. Huneault, Florin Tofan, May 2002
Blends of ethylene-propylene-diene terpolymer (EPDM) and polypropylene (PP) of significantly different viscosity (torque) ratio (T.R.) were prepared in an internal mixer (Haake) over the entire range of composition. The torque of the blends as well as the torque of the pure materials were noted and compared.For the 0.7 viscosity ratio blend, SEM micrographs showed very fine dispersed particles of EPDM of size 50 to 200 nm in the low composition range of EPDM. For the 10.0 viscosity ratio blends the particle size ranged from a few hundred nanometers to a few hundred micrometers at low compositions of EPDM.Also according to solvent gravimetric data and SEM micrographs we find that, the 0.7 viscosity ratio blend demonstrates the onset of percolation at a composition of 30% EPDM and reaches 100% continuity at 60% EPDM. In contrast, the 10.0 viscosity ratio blend showed no continuity at 20% EPDM and attained 100% continuity at a composition of 30% EPDM.
The study being conducted tests the effects of a coating on a core rod for an injection blow-molding machine. The coating is different than the standard chrome plating. The coating on the core rod is the ART Dylyn® R, which is a diamond-like nano-composite material. Through this study, we will determine the effect this coating will have upon friction and thermodynamic properties of the core rod. The significance of this experimentation is to find advantages and disadvantages of the coating. Our goal is to find the effects it will have on the overall part quality. We ran a Design Of Experiments (DOE) on both the coated core rod and the standard core, on an injection blow-molding machine. Following the experiments, analysis of the data, which includes, wall thickness, force, and pressure, will be interpreted.
Damon DeVore, Joseph Latchaw, Carl Caldwell, May 2002
Polycarbonate resins are utilized in many engineering applications that require stable mechanical properties in a wide range of colors. The colorant itself may have an effect on the outcome of the mechanical properties of the final resin compound. If the particles that make up the colorant additive vary in size, this could possibly cause a variation in the mechanical properties of parts molded from the resin, much like the effects of molecular weight distribution in a polymer.This research studied the effects of the mean particle size distribution of the colorant to determine if the particle size does indeed have an affect on the resins mechanical properties.
A new class of antiplasticizers is investigated for epoxy-based crosslinked polymers. In order to elucidate the mechanisms for antiplasticization of epoxy thermosets, effects of additive chemistry and network architecture are considered. Both model and commercial epoxy networks are studied, probing the effect of molecular weight between crosslinks. Additionally, the family of phosphates being studied ranges in molecular weight and density which are shown to strongly influence the degree of antiplasticization. Mechanisms of antiplasticization are discussed.
Bhavjit S. Ghumman, Stephen A. Orroth, Carol M.F. Barry, May 2002
This study examined the effects of compatibilizer type, screw design, screw speed, melt temperature, and water content on the properties of TPO/polyamide-6 blends compounded on a co-rotating twin-screw extruder. Temperature had the greatest influence on the mechanical properties of the resultant blends with higher temperature causing a severe reduction in properties. Higher screw speeds also decreased properties due to shorter extruder residence time. The effect of screw design depended on the strength of the compatibilizer. For this system, a polysiloxane compatibilizer provided more effective dispersion than maleated polypropylene, but was sensitive to moisture content in the polyamide-6.
Kim McLoughlin Senior Research Engineer, Global Materials Science Braskem
A Resin Supplier’s Perspective on Partnerships for the Circular Economy
About the Speaker
Kim drives technology programs at Braskem to develop advanced polyolefins with improved recyclability and sustainability. As Principal Investigator on a REMADE-funded collaboration, Kim leads a diverse industry-academic team that is developing a process to recycle elastomers as secondary feedstock. Kim has a PhD in Chemical Engineering from Cornell. She is an inventor on more than 25 patents and applications for novel polyolefin technologies. Kim is on the Board of Directors of SPE’s Thermoplastic Materials & Foams Division, where she has served as Education Chair and Councilor.
A Resin Supplier’s Perspective on Partnerships for the Circular Economy
About the Speaker
Gamini has a BS and PhD from Purdue University in Materials Engineering and Sustainability. He joined Penn State as a Post Doctorate Scholar in 2020 prior to his professorship appointment. He works closely with PA plastics manufacturers to implement sustainability programs in their plants.
A Resin Supplier’s Perspective on Partnerships for the Circular Economy
About the Speaker
Tom Giovannetti holds a Degree in Mechanical Engineering from The University of Tulsa and for the last 26 years has worked for Chevron Phillips Chemical Company. Tom started his plastics career by designing various injection molded products for the chemical industry including explosion proof plugs and receptacles, panel boards and detonation arrestors for 24 inch pipelines. Tom also holds a patent for design of a polyphenylene sulfide sleeve in a nylon coolant cross-over of an air intake manifold and is a Certified Plastic Technologist through the Society of Plastic Engineers. Tom serves on the Oklahoma Section Board as Councilor, is also the past president of the local Oklahoma SPE Section, and as well serves on the SPE Injection Molding Division board.
Joseph Lawrence, Ph.D. Senior Director and Research Professor University of Toledo
A Resin Supplier’s Perspective on Partnerships for the Circular Economy
About the Speaker
Dr. Joseph Lawrence is a Research Professor and Senior Director of the Polymer Institute and the Center for Materials and Sensor Characterization at the University of Toledo. He is a Chemical Engineer by training and after working in the process industry, he has been engaged in polymers and composites research for 18+ years. In the Polymer Institute he leads research on renewably sourced polymers, plastics recycling, and additive manufacturing. He is also the lead investigator of the Polyesters and Barrier Materials Research Consortium funded by industry. Dr. Lawrence has advised 20 graduate students, mentored 8 staff scientists and several undergraduate students. He is a peer reviewer in several journals, has authored 30+ peer-reviewed publications and serves on the board of the Injection Molding Division of SPE.
Matt Hammernik Northeast Account Manager Hasco America
A Resin Supplier’s Perspective on Partnerships for the Circular Economy
About the Speaker
Matt Hammernik serves as Hasco America’s Northeast Area Account Manager covering the states Michigan, Ohio, Indiana, and Kentucky. He started with Hasco America at the beginning of March 2022. Matt started in the Injection Mold Industry roughly 10 years ago as an estimator quoting injection mold base steel, components and machining. He advanced into outside sales and has been serving molders, mold builders and mold makers for about 7 years.
84 countries and 85.6k+ stakeholders strong, SPE
unites
plastics professionals worldwide – helping them succeed and strengthening their skills
through
networking, events, training, and knowledge sharing.
No matter where you work in the plastics industry
value
chain-whether you're a scientist, engineer, technical personnel or a senior executive-nor
what your
background is, education, gender, culture or age-we are here to serve you.
Our members needs are our passion. We work hard so
that we
can ensure that everyone has the tools necessary to meet her or his personal & professional
goals.
Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:
Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers, ISBN: 123-0-1234567-8-9, pp. 000-000.
Available: www.4spe.org.
Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.