SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library

Sort By:  Date Added   Publication Date   Title   Author

Conference Proceedings

Properties of mLLDPE Blown Films Extruded Utilizing Boron Nitride Based Polymer Process Aids
Eugene A. Pruss, Stuart K. Randa, Stephen S. Lyle, Thomas M. Clere, May 2002

The Saint-Gobain Advanced Ceramics Corp. of Amherst, N.Y. introduces, CarboGlide™, a new family of polymer process aids for thermoplastic resins. These boron nitride based polymer process aids eliminate shark skin melt fracture and postpone, to much higher shear rates, the onset of gross melt fracture. Extrusions of CarboGlide™ and mLLDPE into blown film have resulted in a three-fold increase in rate. In addition, improvements in film quality, such as, better caliper control, mitigation of film streaking, control of coefficient of friction, enhanced gloss, reduced haze and enhanced heat seal-ability are realized with CarboGlide™. Mechanical properties of the film, such as yield strength and Graves tear, are not debased. This unique combination of both process and product improvements, at equivalent to fluoroelastomer process aid costs, demonstrates that CarboGlide™ is the next generation of polymer process aids.

Property Comparison for Talc, Glass Fiber, Mineral Fiber and Mica Filled Polypropylene
Amit Dharia, John O. Rud, May 2002

The performance of muscovite mica as a reinforcing agent is compared with chopped glass fiber (CGF), milled glass fiber (MGF), the processed mineral fiber (PMF®FIBER), and talc in polypropylene. The effect of type, particle size, mixing energy, surface treatment, and coupling agent on physical properties and weld line strength is evaluated.Due to its high hardness, large area to thickness ratio, polar surface, and lubricating nature, mica reinforced polypropylene has higher rigidity, lower shrinkage, the highest surface hardness, lighter color and better processability than the reinforcing agents.

Pultrusion Compounding of Commingled Glass and Polypropylene Fibers
Iyobosa Ekhator, Philip Bates, May 2002

Much of the recent interest in commingled glass and polymer rovings has centered on woven materials. These commingled rovings can also be used in pultrusion forming, or filament winding. However, these processes require that the commingled material be in a tape form and that the glass fibers be well wetted with polymer. An instrumented pultrusion compounding process was developed to perform this wetting and forming operation. It consisted of an unwinding station, preheater guide, impregnation chamber, shaping die, cooling chamber, puller guide, and pulling station.The quality of the pultruded tape as a function of process parameters was assessed using short span flexural testing, glass fiber weight content, and scanning electron microscopy.

Qualitative and Quantitative Methods Used to Satisfy ISO 10993-18: Biological Evaluation of Medical Devices-Material and Chemical Characterization
David E. Albert, Paul J. Upman, May 2002

The international standard 10993 has been and continues to be the driving force behind the biological safety evaluation of biomaterials and medical devices. An important step in the process is that of characterizing the materials and the chemicals that can migrate or extract from the polymer components to the patient. Such basic information is critical to understanding biological response and risk management of the device. Whether to evaluate the polymer, simulated extracts, or degradation products will be discussed. Appropriate testing to do at the raw material, component part and final device stages will be presented.

Rapid Tooling – What Works and What Doesn't
Barbara J. Arnold-Feret, May 2002

This paper is third in a series of updates on rapid and alternative tooling technology for plastic molding and manufacturing. Examination of LENS, sintered metal, allow embedding technology, as well as newer processes using LSA and layer deposition is detailed. Tolerance, cosmetics, cost and lead times are update for users of commercial processes so expert decision can be made on best use for various molding and processing applications.Overall, during the last year, the leaps and bounds of the past progress in rapid tooling slowed almost as much as the economy. The lack of progress can be attributed to various factors including lack of funds, lack of interest, lack of defined goals, and lack of diversity of R&D efforts.

Reactive Blending of Poly(Ethylene Terephthalate) and Ionomerfor Recycling
Nadir de Brito Sanches, Elen B.Pacheco, Marcos L.Dias, May 2002

The reactive blending in melt state of poly(ethylene terephthalate) and sodium and zinc ionomers based on ethylene-methacrylic acid copolymers was investigated using a torque rheometer. The components were blended in mixer during 90 min for recycling simulation. The torque increases with processing time according to typical profiles depending on the metal type. Torque changes were attributed to chemical reactions between components generating high molecular weight species. In addition to PET degradation, the ionomers react with PET carboxyl or hydroxyl end groups forming graft copolymers and crosslinked species identified by multiple internal reflection (MIR) FTIR technique.

Reactive Melt Modification of Polypropylene/ Unsaturated Polyester Blends
C. Wan, M. Xanthos, M. Yamaguchi, May 2002

Melt blending of polypropylene (PP) with a low molecular weight unsaturated polyester (UP) was studied in a batch mixer in the presence of peroxide free radical initiator. Competing degradation and crosslinking reactions of the peroxide with the blend components resulted in a finer and more uniform morphology for this immiscible blend system. The blends were characterized by FTIR, DSC, microscopy and rheology in order to examine the possibility of the formation of block" or "graft" PP-UP structures which would enhance phase interaction and promote compatibility. The batch data were used to define the process requirements for the continuous modification by reactive extrusion."

Real Time Development of Orientation in PP during Stretching as Detected by Spectral Birefringence Technique
Yutaka Koike, Taner Zafer Sen, Miko Cakmak, May 2002

The true stress- true strain and birefringence development in a series of PP films with varying levels of tacticity has been measured using a newly developed uniaxial stretching system. This system allows the real time study of the structural reorganization processes at industrially meaningful temperature and deformation rates. The system is fast enough to follow the deformation at high rates of strains and allows us see their deformation at temperatures well below the melting temperature of the samples provided that severe necking does not occur. It has been found that birefringence increases steadily with true strain. Certain stress is required to start to increase birefringence at lower temperature, meanwhile, the birefringence changes almost linearly with stress essentially following stress optical law behavior, as long as the temperatures are near melt temperature.

Recent Trends in Regulatory Activity by the Center for Biologics Evaluation and Research
John R. Szymankiewicz, May 2002

The apparent trend in medical therapeutics is to move toward a biologically derived therapy stemming from human or xenobiology. The applications of this trend to the medical plastics industry are severe in the level of scrutiny and care necessary to meet the intent and letter of the legal regulations associated with biologic processing, control, and packaging. The Center for Biologics Evaluation and Research (CBER) is the responsible arm of the Food and Drug Administration charged with regulating the biologics industry. This paper will address some of the recent trends in regulatory activity by CBER.

Recommended Factors of Safety and Related Considerations
S.I. Krishnamachari, May 2002

The only available mechanical design rules for plastics parts pertain to proportioning the sizes of ribs fillets, draft angles etc. Such rules help only to design the individual elements, but leaves a long way to go in settling questions in stress analysis. More specifically, such rules stop at ensuring success with the chosen process.Further, there is little formal guideline in the industry about dealing with creep strains, fatigue life, combined (thermal + molded-in + service) stresses etc., although enough technology is available to calculate them. Also, there is also little recognition of the fact that the long term presence of stress (or strain) depends on the cause of the stress.This paper addresses one of the resolutions to this situation by proposing minimum factors of safety for various service loading types, along with qualitative reasoning to back up. The proposal is motivated by (i) the arbitrariness in plastics of what stress levels are acceptable and what are not (ii) successful history of the use of factor of safety in bringing all structural performance to one common denominator (iii) coupled material behavior of plastic.Lastly, it is pointed out that all the factors are for products that are to survive loads, over certain period of time, and not for those which are designed to come apart at a specified force application.

Recyclability of Crosslinked Polyethylene Based on Creep
Ryan E. Smerkar, May 2002

Crosslinking of polyethylene greatly improves the material's properties. The crosslinking process causes problems with the material's ability to be recycled. It prevents the material from remelting, making it nearly impossible to process in an injection molding machine.The crosslink density has an effect on both the material's ability to creep and on its ability to be recycled. Creep data was studied to determine the effects of increasing crosslink density on an injection molded polyethylene part. This data will be used as a baseline for how parts made from 25% recycled crosslinked regrind compares with the original crosslinked part. This paper will focus on recycling crosslinked polyethylene (PEX) determined by its creep data.

Reducing Curl in Multilayer Blown Film. Part I: Experimental Results, Model Development and Strategies
Barry A. Morris, May 2002

Multilayer films often curl or roll-up on themselves, making them difficult to be used in packaging equipment. Curl is particularly acute in asymmetric barrier blown films. Experimental results from simple two- and three-layer structures are described in an effort to understand the underlying mechanisms behind curl. A model from the literature based on beam theory" is adapted to film applications. In this model force and momentum balances are used to solve for curl as a function of each layer's thickness stiffness and shrinkage during fabrication. Of these inputs differential shrinkage is the most difficult to determine. Pressure-Volume-Temperature (PVT) curves are introduced to relate differences in volume change among polymers during quenching. PVT data alone are not sufficient for a predictive model. Qualitative agreement however between the experimental results and model predictions are obtained leading to several strategies for curl reduction. These include reducing crystallinity matching thermal expansion coefficients matching freezing points and increasing the rate of quenching. Another strategy is to change the thickness and distribution of layers in the film allowing the stiffness of one or more layers to counterbalance the curl. Such an approach can be greatly enhanced by a truly predictive model and is the subject of Part II."

Reducing Curl in Multilayer Blown Film. Part II: Application of Predictive Modeling to t Barrier Cereal Liner Film
Barry A. Morris, May 2002

Multilayer blown films often curl, particularly if the layers are not distributed symmetrically. A quantitative model is developed for predicting curl based on continuum mechanics: curl is the result of differential shrinkage between layers during quenching and is moderated by the stiffness and thickness of the layers. The difficulty in using such an approach is estimating differential shrinkage. Pressure-Volume-Temperature (PVT) data give good qualitative information on differential shrinkage, but they are generated under experimental conditions that differ greatly from commercial blown film processes. To correct the PVT data, a semiempirical approach is utilized. The model is run backwards" to compute the differential shrinkage in two-layer structures where the curl has been measured. From this PVT correction factors are obtained to predict the curl of multilayer structures.The model is applied to a (HDPE-tie-EVOH-tie-sealant) cereal liner structure. A sensitivity analysis shows that increasing the thickness of the HDPE layer reducing the shrinkage of the HDPE and reducing the thickness and stiffness of the EVOH layer can reduce curl. Experiments on a five-layer blown film line confirm the model predictions: a standard cereal liner structure had severe curl yet by using the model as a guide we were able to make essentially flat film."

Reducing Shrinkage and Warpage for Printer Parts by Injection Molding Simulation Analysis
Shijun Ni, May 2002

Injection molding simulation software was used for predicting shrinkage and warpage of a printer part. A paper tray, one of the larger injection-molded parts in a printer was warped and the simulation duplicated the part deformation. The part was modified by optimized runner system design and molding process conditions to improve the mold filling and reduce the part warpage. Simulations predicted the final warped shapes for the original and modified paper tray. The predicted shrinkage and warpage of the part were compared to the measurements of a production part. The part warp prediction was in good agreement with the actual part deformation.

Relationship between Optical Properties and Optimized Processing Parameters for Through-Transmission Laser Welding of Thermoplastics
David A. Grewell, Paul Rooney, Val A. Kagan, May 2002

Previously we reported to Antec our studies on optical characterization (laser energy transmission, absorption, etc.) at a wide range of infra-red wavelength for various nylon based plastics (un-filled and reinforced) with the influence of various colorants. Later we discussed our analysis on optimized mechanical performance of the laser welded joints. In this current paper, we will try to increase the understanding of the plastics engineering community regarding the relations between optical properties of thermoplastics and optimized processing parameters of through-transmission laser welding (simultaneous welding mode).

Reliability Assessment of New Polymer Products with Environmentally Driven Failures
Richard Hage, Anthony Lightfoot, May 2002

A methodology is presented for the reliability assessment of new product offerings, where product failures are driven by environmental conditions. The methodology is valid for the case of limited related product field data and understanding of underlying environmentally driven failure mechanisms. The methodology uses reliability theory in concert with failure mechanistic models to provide high resolution models which can be used to forecast liability exposure of new product offerings. The methodology has been successfully demonstrated for evaluation of Vinyl based products. The quantitative results generated suggest environmental region risks, overall new product risk, and risk relative to existing related products.

Reliability-Based Method for Service Life Prediction of Materials
C.C. White, J. Martin, S. Weber, L. Shultz, May 2002

Standard test methods, such as ASTM C719, evaluate sealant performance though threshold test measurements. This method and its derivatives do not offer reliable predictions of in-service performance. This presentation will detail efforts to move away from the use of threshold tests towards a reliability-based method for predicting the service life of sealant materials. The central role of dose-damage based models in this approach is explained. The central role of accurate, rapid, prediction of in-service performance in developing models to communicate the economic consequences of the materials decisions will be presented.

Reliable Snap-Fit Connections
Jan L. Spoormaker, Natalia E. Ermolaeva, May 2002

The reliability of snap-fit connections depends very much of the stiffness of the plastic parts to assemble. The higher the stiffness, the smaller the required assembly displacements will be. The displacement(s) are the difference between dimensions of plastic parts and the smaller the displacements the higher the relative tolerances of the displacements. In case of small displacements sharp bosses are designed to obtain maximal displacements. These sharp boss tips suffer from high contact stresses and are blunted during assembly.The design aspects will be illustrated of a problem of assembling a push-button on a rod and of mounting a semi-spherical shell on a glass bulb with snap-fits, using FEM calculations.

Resin-Gas Injection Technique for Bonding and Surface Modification of Polymer-Based Microfluidic Platforms
Siyi Lai, Yeny Hudiono, L. James Lee, Sylvia Daunert, Marc J. Madou, May 2002

Polymeric materials have attracted a great deal of attention in microelectromechanical systems (MEMS) for biomedical applications (BioMEMS) over recent years, due to their low cost, good processibility, and broad range of physical and chemical properties. Polymer-based microfabrication has been developed and studied for years. However, bonding (i.e., sealing the platform with a lid) and surface modification are still challenging issues. In this paper, we present a new method recently developed in our lab: resin-gas injection-assisted bonding. This new approach can easily seal microfluidic devices with micron and sub-micron sized channels without blocking the flow path. It can also be used to modify the channel shape, size, and surface characteristics (e.g., hydrophilicity, degree of protein adsorption). By applying the masking technique, local modification of the channel surface can be achieved through cascade resin-gas injection. Experiments are carried out to demonstrate bonding efficiency and surface modification.

Review of Plastics Pipe Lifetime Evaluation Methods: Predictive Capability and Limitations
A. Chudnovsky, K. Sehanobish, May 2002

A reliable estimation of pipe lifetime (such as at least 50 years or 100 years of useful life) is a very important factor for business decision in selection of plastic pipes in specific applications. Various accelerated tests for lifetime evaluation and test results extrapolation techniques are discussed in this presentation. The acceleration is necessary to complete the evaluation process of the pipes within a reasonable time interval. However, an accelerated test implies the test condition different from that in service. Thus, the criteria of similarity (correspondence) between the service and an accelerated testing shall be clearly identified. At present the widely accepted by plastics pipe industry methodology for material ranking and pipe lifetime evaluation, is based on many years of PE pipes service experience. An analysis of the engineering background and the scientific foundation of the existing methodology are discussed. The limitations of the phenomenological approach to the pipe lifetime assessment is presented and illustrated by an example of failure of the lifetime predictions. The needs for fundamental understanding and theoretical modeling of the failure mechanisms for reliable piping lifetime prediction and a few steps in that direction are also addressed.

SPE-Inspiring Plastics Professionals

© 2024 SPE-Inspiring Plastics Professionals.
All rights reserved.

84 countries and 60k+ stakeholders strong, SPE unites plastics professionals worldwide – helping them succeed and strengthening their skills through networking, events, training, and knowledge sharing.

No matter where you work in the plastics industry value chain-whether you're a scientist, engineer, technical personnel or a senior executive-nor what your background is, education, gender, culture or age-we are here to serve you.

Our members needs are our passion. We work hard so that we can ensure that everyone has the tools necessary to meet her or his personal & professional goals.

Contact Us | Sitemap | Data Privacy & Terms of Use



SPE US Office
83 Wooster Heights Road, Suite 125
Danbury, CT 06810
P +1 203.740.5400

SPE Australia/New Zealand
More Information

SPE Europe
Serskampsteenweg 135A
9230 Wetteren, Belgium
P +32 498 85 07 32

SPE India
More Information

SPE Middle East
More Information

3Dnatives Europe
157 Boulevard Macdonald
75017, Paris, France
More Information

Powered By SPE

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals

SPE ImplementAM

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals

SPE-Inspiring Plastics Professionals

  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net