The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.
Important Update: SPE's Technical Library Is Evolving The SPE Technical Library will be retired on September 15, 2025, as we transition to Polymer Insights—a powerful, AI-driven platform designed to transform how plastics professionals access and apply technical knowledge. Polymer Insights delivers answers and insights to your questions that are sourced entirely from SPE-curated content, including decades of peer-reviewed research, technical papers, and industry expertise. This new tool goes beyond search—providing intelligent, contextual results tailored specifically to you.
Open Access Preview: July 17–20, 2025
Be among the first to explore! From Thursday, July 17 through Sunday, July 20, Polymer Insights is open to all — no login required. Try it at www.polymerinsights.ai.
After July 20: Premium Members Only!
Don’t let this level of access end with the free trial!Starting on Monday, July 21, Polymer Insights will be exclusive to SPE Premium Members. Join SPE as a Premium member to keep unlimited access to this revolutionary tool!
Thermotropic liquid crystalline polymer reinforced thermoplastic polymer strands were spun and used in injection molding to form wholly thermoplastic composite materials. While keeping the strand size suitable for
injection molding an effort was made to increase the orientation and aspect ratio of the reinforcing TLCP fibril.
The pelletized strand was injection molded without disturbing the TLCP reinforcing fibrils. The samples have
similar mechanical properties lower density and smoother surfaces compared with glass fiber reinforced samples.
A new dynamic mechanical analyzer with special fluid bath furnace has been developed to measure the mechanical and thermal properties of materials while immersed in fluids or exposed to humidity. This technique
is superior to traditional methods of first exposing the material and then performing the measurements. Such experiments are performed on several materials including oil filter paper and an epoxy coating. The former material is immersed in engine oil and shows post-curing behavior. The epoxy is measured in both air and salt water (saline). The saline experiments show that the traditional method (in air) can lead to anomalous results.
Topics of this paper are recent progress in 3-D orthogonal weaving composites made with 3-D woven preforms their mechanical properties and applications. The patented fabric combines no-crimp in-plane fiber reinforcement with integral through-thickness fiber reinforcement. The latter one enables to suppress delamination and substantially improve interlaminar strength and damage tolerance. 3-D orthogonal woven preforms are especially suited to composites processing using RTM technique. Also such composites are
characteristic with fairly predictable basic mechanical properties allowing to apply conventional modeling and
predictive analysis tools.
In your father’s car all of the significant body
structures were made from metals. Today composites are
increasingly used to produce more and more demanding
structures. In concept vehicles such as the Daimler-
Chrysler CCV and ESX3 composites are the structure. In
production vehicles pick-up boxes floor pans front-end
carriers closure panels skid plates and many other
structural applications are made from composites.
Direct Feed Thermoplastic (DFT) composites
have been used to produce several automotive structures
including front-end carriers seat bases and convertible
soft-top rails and headers. In this last application soft-top
headers DFT composites successfully displaced steel and
SRIM composites on the basis of relative cost and
performance.
Like most technology substitutions the process
of developing the DFT header was lengthy taking over
five years from concept to production. This development
process along with the DFT manufacturing technology
and the benefits that it imparts to soft-top headers are
described in this paper. The paper demonstrates that DFT
when used appropriately offers an unparalleled
combination of performance aesthetic and economic
benefits.
The thermoformability of low-density polypropylene sheets reinforced with long discontinuous glass fibers was assessed using a laboratory scale thermoforming machine. The effects of material parameters (glass fiber loading and sheet basis weight) and processing parameters (sheet temperature and pressure) on part thickness glass fiber distribution and mechanical properties were evaluated. The results indicate that for the parts studied pressure assist is required for thermoforming. Part characteristics were observed to be reproducible and constant over a wide range of sheet temperatures and pressure assist levels. The mechanical properties of the thermoformed sheets were assessed using flexural testing. The modulus and strength values observed were
comparable to properties obtained on compression molded samples of the same thickness.
Thermoplastic composites are attractive for automotive applications since they can be rapidly formed into low cost complex structures with good impact strength and flexural rigidity. The properties of these composites can be enhanced while reducing basis weight through the use of sandwich structures. This paper will illustrate the extent of enhancement achieved through the use of thermoplastic composite skins combined with lower density
thermoplastic cores. Glass mat reinforced polypropylene (GMT) with a thickness of 3.8 mm and a glass content
of 40 wt % will be used as a baseline for assessing the performance of sandwich panels. Skins will include GMT as well as aligned fiber reinforced laminates. Both honeycomb and foam cores will be evaluated. Flexural rigidity will be presented and impact properties will be based on instrumented drop impact testing.
The Valyi SFC (surface finishing/compression) molding TM process was used to evaluate the effects of fiber length on the important performance properties required for class A thermoplastic composite panels. Class A moldings for automotive exterior use must meet demanding visual performance and demanding structural properties. The benefits of long fiber reinforcement in SFC molding have been reported. The long fiber reinforced PP resins show enhanced stiffness and impact strength. Fiber length degradation in the SFC process is minimal. This paper reports on the surface properties of polypropylene composites made with short and long fibers. Surface read through of the fiber reinforcement is examined and methods for improvement are discussed. The SFC process combines resin extrusion film finishing and compression molding in one low pressure molding process. In this process a finishing film is placed over a mold cavity resin is extruded over the film from a traversing “coat-hanger” die and the mold is closed to form and finish the part in one step. This process has been successfully used to mold full-scale vertical and horizontal panel composites.
This study is to investigate the feasibility of shaping preconsolidated woven fabric reinforced thermoplastics using sheet hydroforming as being a new forming method for composite manufacturing. For that purpose a new
constitutive model has been developed based on a homogenization method considering the microstructures of
composites including mechanical and structural properties of fabric reinforcement. The current model aims to account for the effect of the fiber strength difference and orientation on anisotropy and also to simulate shear deformation with no length change which is common in FRT composite forming. For validation purposes the developed model was implemented in an explicit dynamic finite element code and tested for several deformation modes including pure shear as well as three-dimensional deformation mode
Natural/Bio-fiber composites (Bio-Composites) are emerging as a viable alternative to glass fiber reinforced composites especially in automotive applications. Natural fibers which traditionally were used as fillers for thermosets are now becoming one of the fastest growing performance additives for thermoplastics. Advantages of natural fibers over man-made glass fiber are: low cost low density competitive specific mechanical properties reduced energy consumption carbon dioxide sequesterization and biodegradability. Natural fibers offer a possibility to developing countries to use their own natural resources in their composite processing industries. The combination of bio-fibers like Kenaf Hemp Flax Jute Henequen Pineapple leaf fiber and Sisal with polymer matrices from both non-renewable and renewable resources to produce composite materials that are competitive with synthetic composites requires special attention i.e. biofiber- matrix interface and novel processing. Natural fiber reinforced polypropylene (PP) composites have attained commercial attraction in automotive industries. Needle punching techniques as well as extrusion followed by injection molding for natural fiber–PP composites as presently adopted in the industry need a “greener” technology-- powder impregnation technology. Natural fiber–PP or natural fiber–polyester composites are not sufficiently eco-friendly due to the petro-based source as well as non-biodegradable nature of the polymer matrix. Sustainability industrial ecology eco-efficiency and green chemistry are forcing the automotive industry to seek alternative more Eco-friendly materials for automotive interior applications. Using natural fibers with polymers (plastics) based on renewable resources will allow many environmental issues to be solved. By embedding bio-fibers with renewable resource based bio-polymers such as cellulosic plastic corn-based plastic starch plastic and soy-based plastic are continuously being developed at Michigan S
Montmorillonite clay - diamine intercalates were used for the formation of glassy thermoset epoxy – clay nanocomposites. The intercalated alpha-omega polyoxypropylene diamines (Jeffamines) played the dual role of organic modifier and curing agent. Depending on the chain length the intercalated diamines adopt different configurations inside the clay galleries resulting in basal spacings from ~14 Å (lateral monolayer) to ~45 Å (folded structure). Accordingly non-intercalated and exfoliated (nano)composites were formed with improved mechanical properties. From a mechanistic point of view they offer the optimum environment for enhanced intragallery polymerization by eliminating the effect of dangling alkyl chains in the polymer’s matrix and by utilizing the catalytic activity of both onium ions of each diamine molecule. The use of the primary diamines as organic modifiers of the H+-clays afford an in situ functionalization of the inorganic clay as part of the curing process of thermoset epoxy polymers reducing the cost and time for nanocomposite fabrication.
The addition of short glass fibers to thermoplastic materials is known to significantly reduce the impact properties of the resulting composites. This paper is the third in a series devoted to understanding and improving
the impact strength of short glass fiber reinforced vinyl composites. The first paper characterized the impact
behavior and failure mechanisms of these materials. The second paper examined methods of increasing the impact resistance using semi-rigid capstock laminates. The current paper extends this work to laminates using rigid vinyl layers to achieve higher impact strength. Instrumented drop weight impact results demonstrate
improvements up to four times that of the original composite.
Long glass fiber reinforced polypropylene (LGF PP) has generated significant interest in the automotive industry over the past several years. With increasing emphasis on cost reduction part consolidation reduction in total assembly cycle time and recyclables this versatile material offers many benefits. To provide these solutions while considering (improving) the economics required in the automotive structural large part segment LNP has introduced a highly loaded LGF PP concentrate. This paper will first discuss the industry trends that are driving tremendous growth potential in LGF PP. This brief overview will address the evolution of LGF PP materials and components in the vehicle and market pressures driving the need for a more cost effective material approach. The cost reduction potential of LGF PP concentrate blends will be illustrated along with the mechanical property performance and other specific benefits of this masterbatch concept. A study of impact-enhanced blends will also be reviewed
Long-fiber-reinforced thermoplastics (LFT) have gained an increasing market share in the European automotive industry. In some large-scale applications the processing of semi-finished products such as LFT-GMT (glass-mat reinforced thermoplastic sheets) and LFT-G (long-fiber-reinforced thermoplastic granulate) is already known. The LFT-D process in which continuous rovings are fed directly into the polymer melt differs fundamentally from the LFT-GMT and LFT-Pellet-Process. High economic efficiency is achieved when the cost intensive production of semi-finished products as well as the subsequent logistic costs are avoided. Thermal stress of the compound is minimized. Excellent flow properties as well as consistent glass fiber content are obtained. The degree of freedom regarding the use of new polymer blends and different types of fibers for example natural fibers enables an individual matching of the compound according to the specific needs of the application. In addition the glass fiber content can be adjusted as needed. The solution presented in this paper is based on the Dieffenbacher Direct Process (LFT-D-ILC). This development is responding to the technical requirements of automotive parts for large-scale production. As the leading manufacturer of presses and fully automated press lines for the production of components of fiber-reinforced materials such as SMC BMC LFT-GMT LFT-P and LFT-D-ILC Dieffenbacher offers complete technical solutions to suppliers and the automotive industry.
One of the ways of increasing fuel efficiency of a typical automobile is to reduce its overall weight. To this extent plastics especially fiber reinforced plastics are finding an increasing role as automotive structural components. The automotive structural systems made up of these structural fiber reinforced plastic components should satisfy the needs in terms of safety strength NVH and durability in addition to being affordable manufacturable with desired fit and finish and recyclable. In general structural components made up of fiber reinforced plastics are adhesively bonded together to form structural systems capable of carrying automotive structural loads under static and dynamic conditions. Fiber reinforced plastics and the adhesive used to bond them to form a structure are inherently viscoelastic in behavior. It is imperative therefore to understand the behavior of these adhesively bonded fiber reinforced plastic components in terms of their load carrying capacity at different temperatures and different load or strain rates. One of the key factors in this understanding is to characterize the adhesive failure itself at different temperatures and different strain rates of loading. The present paper is an attempt to present some results from an ongoing research work on fiber reinforced adhesively bonded large injection molded thermoplastic automotive structural systems. In particular the paper presents the results from the test methodology and the mathematical models used to characterize the failure mechanics of adhesively bonded automotive body sections at different temperatures and different load or strain rates.
The development in the field of composites has been spurred by the need for lightweight fuel-efficient automobile that is environmentally friendly and affordable. A low density light weight GMT composite containing long chopped fiber strands was developed by AZDEL Inc. for use in headliner and other automotive applications. The low density GMT (LD-GMT) is available in grades ranging in basis weight of 600 to 2000 g/m2.
This paper presents development of this LD-GMT material for automotive interior and structural applications. This
thermoformable material has several advantages over other traditional materials like steel and thermoset composites. The LD-GMT offers design flexibility low weight high rigidity excellent energy absorption characteristics faster cycle times and an environmentally friendly manufacturing process. The design flexibility and application of these LD-GMT composites in automotives and the advantages of applying these composites over the other materials in interior structural and modular applications will be discussed.
Cutting flexural test specimens from molded plaques is commonly used in material testing. The mechanical properties of these cut specimens may be affected by the cutting process as it could introduce extrinsic flaws and thermal residual stress on the cut surfaces. The objective of this experimental research is to determine how band saw cutting affects the flexural strength of 33% short glass fiber reinforced nylon 66. The specimens for the flexural test were obtained by cutting molded plaques using different blade types blade speeds feed rates and levels of polishing. The results were compared with those from uncut specimens. Surface morphology of specimens’ cut edges was observed by using Scanning Electron Microscopy. The results indicate that lowest strength of cut specimens is achieved at the lowest blade speed and highest work piece feed rate.
The goal of this study was to verify through experimentation and numerical modeling that the stamp thermo-hydroforming process provided a suitable alternative to conventional methods such as thermoforming and stamp forming as a means for processing thermoplastic materials. Hydroforming involved supporting the thermoplastic sheet with a bed of viscous fluid that applied a hydrostatic pressure across the part during forming. The external support provided a through-thickness compressive stress that delayed the onset of tensile instabilities as well as reduced the formation of wrinkles due to tensile frictional forces. Preliminary experiments were conducted using a procedure that was designed and built in-house. Initial experiments focused on a fluid pressure applied from one side of the draw blank material. Evaluation included pure stretch experiments experiments where the material was allowed to draw and experiments conducted under a combination of draw and stretch. Complications arose during the experimentation but the benefits of a localized hydrostatic pressure were demonstrated including a 7-10% increase in draw depth for the thermoplastic sheets. The numerical analysis conducted using MARC showed results that correlated with the experimental trends. Overall the experimental results coupled with the numerical modeling showed that the stamp thermo-hydroforming process was a viable processing method for thermoplastic materials that warrants additional attention based on the significant advantages in cost savings and part production accuracy.
Composite materials continue to gain popularity in the automotive community primarily due their ability to reduce weight. Other key advantages include function integration corrosion resistance and low cost tooling. Although thermoplastic composite products have been commercially available for some time now new products specifically continuous fiber reinforced thermoplastics are spurring engineering activity in this growing segment of the composites industry. This paper serves to review materials technologies and applications of continuous fiber reinforced thermoplastics in the automotive industry. Specific application areas include underbody protection bumper beams and load floors.
Low-density GMT (glass mat thermoplastics) materials are being used increasingly in automotive interior applications. These composites have found wide acceptance amongst various automotive OEMs for overhead systems. The superior mechanical properties availability in various basis weight grades ease of processing and ability to be molded to differing thickness makes the AZDEL SuperLite a versatile material for both structural and non-structural headliners. In this paper we have presented the acoustical performance of these low-density composites. Various combinations of this headliner substrate with face fabrics and covering materials were made and their normal incidence sound absorption coefficient was obtained according to ASTM E1050 test method. By varying the areal density molded thickness and the types of skins on the surface of the composite the porosity and the airflow resistance can be tailored to provide optimal sound absorption across a broad range of frequencies. The effect of these factors and their interactions are discussed.
Kim McLoughlin Senior Research Engineer, Global Materials Science Braskem
A Resin Supplier’s Perspective on Partnerships for the Circular Economy
About the Speaker
Kim drives technology programs at Braskem to develop advanced polyolefins with improved recyclability and sustainability. As Principal Investigator on a REMADE-funded collaboration, Kim leads a diverse industry-academic team that is developing a process to recycle elastomers as secondary feedstock. Kim has a PhD in Chemical Engineering from Cornell. She is an inventor on more than 25 patents and applications for novel polyolefin technologies. Kim is on the Board of Directors of SPE’s Thermoplastic Materials & Foams Division, where she has served as Education Chair and Councilor.
A Resin Supplier’s Perspective on Partnerships for the Circular Economy
About the Speaker
Gamini has a BS and PhD from Purdue University in Materials Engineering and Sustainability. He joined Penn State as a Post Doctorate Scholar in 2020 prior to his professorship appointment. He works closely with PA plastics manufacturers to implement sustainability programs in their plants.
A Resin Supplier’s Perspective on Partnerships for the Circular Economy
About the Speaker
Tom Giovannetti holds a Degree in Mechanical Engineering from The University of Tulsa and for the last 26 years has worked for Chevron Phillips Chemical Company. Tom started his plastics career by designing various injection molded products for the chemical industry including explosion proof plugs and receptacles, panel boards and detonation arrestors for 24 inch pipelines. Tom also holds a patent for design of a polyphenylene sulfide sleeve in a nylon coolant cross-over of an air intake manifold and is a Certified Plastic Technologist through the Society of Plastic Engineers. Tom serves on the Oklahoma Section Board as Councilor, is also the past president of the local Oklahoma SPE Section, and as well serves on the SPE Injection Molding Division board.
Joseph Lawrence, Ph.D. Senior Director and Research Professor University of Toledo
A Resin Supplier’s Perspective on Partnerships for the Circular Economy
About the Speaker
Dr. Joseph Lawrence is a Research Professor and Senior Director of the Polymer Institute and the Center for Materials and Sensor Characterization at the University of Toledo. He is a Chemical Engineer by training and after working in the process industry, he has been engaged in polymers and composites research for 18+ years. In the Polymer Institute he leads research on renewably sourced polymers, plastics recycling, and additive manufacturing. He is also the lead investigator of the Polyesters and Barrier Materials Research Consortium funded by industry. Dr. Lawrence has advised 20 graduate students, mentored 8 staff scientists and several undergraduate students. He is a peer reviewer in several journals, has authored 30+ peer-reviewed publications and serves on the board of the Injection Molding Division of SPE.
Matt Hammernik Northeast Account Manager Hasco America
A Resin Supplier’s Perspective on Partnerships for the Circular Economy
About the Speaker
Matt Hammernik serves as Hasco America’s Northeast Area Account Manager covering the states Michigan, Ohio, Indiana, and Kentucky. He started with Hasco America at the beginning of March 2022. Matt started in the Injection Mold Industry roughly 10 years ago as an estimator quoting injection mold base steel, components and machining. He advanced into outside sales and has been serving molders, mold builders and mold makers for about 7 years.
84 countries and 85.6k+ stakeholders strong, SPE
unites
plastics professionals worldwide – helping them succeed and strengthening their skills
through
networking, events, training, and knowledge sharing.
No matter where you work in the plastics industry
value
chain-whether you're a scientist, engineer, technical personnel or a senior executive-nor
what your
background is, education, gender, culture or age-we are here to serve you.
Our members needs are our passion. We work hard so
that we
can ensure that everyone has the tools necessary to meet her or his personal & professional
goals.
Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:
Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers, ISBN: 123-0-1234567-8-9, pp. 000-000.
Available: www.4spe.org.
Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.