SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library
Keyword/Author:
After Date: (mm/dd/yy)  
 
Sort By:   Date Added  ▼  |  Publication Date  ▼  |  Title  ▼  |  Author  ▼
= Members Only
Conference Proceedings
Methods for Polystyrene Bead and Polyol Isocyanate Duck Decoys
Michael J. Glotzbach, May 2001
The use of Polystyrene has been greatly increased since its introduction by the Koppers Chemical Company in the 1940's. Due to this rise in the use of Polystyrene many new and easier ways of production have been conjured. Some of these processes work better than others considering the exact heat that is needed to properly expand the beads to their full capacity. This paper will address issues on how molding conditions, mixture ratios, and mold quality will affect the molding characteristics and outcome of Polystyrene beads and Polyol Isocyanate products. The products in this paper will be duck decoys.
Surface Modification of Polymer via Surface-Induced Migration of Copolymer Additives
Hojun Lee, Lynden A. Archer, May 2001
Surface-induced migration of low surface tension block copolymer additives, polystyrene-b-polydimethylsiloxane (PS-b-PDMS) and high surface energy copolymer additives, polystyrene-b-polymethylmethacrylate (PS-b-PMMA) in a polystyrene (PS) host was investigated using a series of matrix PS molecular weight (Mw). Dynamic Contact Angle analysis and Attenuated Total Reflection Fourier Transform Infrared spectroscopy measurements were used to characterize surface properties of polymer/additive blends created by solvent casting, precipitation, and melt annealing processes. For all matrix Mw, selective DMS enrichment of the air/polymer interface was observed due to the strong surface energy difference between additives and matrix. The surface excess concentration of DMS group, ??DMS was also found to depend on host polymer Mw and annealing conditions: ??DMS ~ Mw,PS?, where the scaling exponent a is a function annealing conditions. Whereas entropic-driven surface migrations were observed in PS-b-PMMA/ PS blends. The diffusion of PS-b-PMMA in PS matrix was found to depend on matrix molecular weight even though much high Mw, which is not consistent with reptation theory in molecularly homogeneous linear blends. And also for high molecular weight PS, thermodynamic driving force is revealed to compete with diffusion rate of additives. These findings could be discussed in terms of the matrix Mw dependence of diffusivity, surface tension and configurational entropy of host polymer.
Kinematics of Quasistatic Inflation of a Catheter Balloon Made of Elastomeric Material: Simulation and Experiment
Xiaoping Guo, Michael Bednarek, May 2001
Based upon a nonlinear membrane theory, a theoretical model is proposed for simulating a quasistatic deformation process of a catheter balloon made of an elastomeric material and inflated by the internal pressure acting across the membrane of the balloon. A Lagrangian approach is utilized to describe a material particle's motion during inflation. The deformation field and the system of governing equations are determined in terms of the principal stretches and the Cauchy stresses. With ~, incorporation of the constitutive laws of hyperelasticity and a set of proper boundary conditions, the numerical scheme for calculating the deformation-loading relationship of the balloon under quasistatic equilibrium condition is developed. The inflation experiments are conducted under the assumed quasistatic condition for various angiographic catheter balloons of different designs. Intermediate inflated geometries and inflating pressures at various inflating volumes are measured and compared with the predictions. It is found that the theoretical model can reliably predict the short-term kinematic behavior of balloon inflation. In addition, the effects of various balloon design parameters on the kinematics of inflation are evaluated.
High Performance Decoration with Polyamide Films
Joerg Lohmar, Michael Beyer, May 2001
Over the last decades a large number of new surface decoration and protection processes have been developed using polymer films instead of coatings. Films of polyamide 12 and polyamide 12 elastomers offer the best combination of transparency, mechanical properties, and chemical resistance. Highest quality diffusion printing techniques are applied to create brilliant decorations on i. e. sports articles like snowboards, skis, tennis rackets, or for demanding automotive applications. Most recently two-layered so called lacquer films with brilliant metallic or other effect fillers were introduced into the market to replace conventional multi-step coatings. In the paper we will present mono- and multi-layer structures of decorative and protective polyamide films. Printing and processing techniques will be discussed showing various applications.
Structure of Propylene/1-Pentene Random Copolymers
L. Halász, K. Belina, O. Vorster, I. Tincul, May 2001
Propylene/1-pentene copolymers were prepared, characterized and reported previously. [1-6]. This new family of copolymers form ?-modification during isothermal crystallization. Upon deformation significant changes take place in the crystalline structure of the material. Two extensional deformation methods, (thermoforming and cold stretching) were used and the thermal and crystalline properties of both the deformed and undeformed samples were determined by DSC and WAXD. Thermoforming has no effect on the thermal and crystalline properties of the material. On the other hand, cold stretching changes the crystalline structure of the material. Upon extension, the degree of ?-modification decreased with a corresponding increase in the degree of ?-modification.
The Effects of Directional Molecular Orientation on Tensile Stress and Elongation of Polypropylene Film
Lucas Warren Mellinger, May 2001
Highly oriented polymer dogbone samples were tensile tested at different angles to the machine direction to determine how tensile stress at yield and the percent elongation at yield is affected by the alignment of molecules. Theoretically, as the angle from machine direction increases, the tensile strength at yield will decrease. It is also expected that as the angle from machine direction increases, the strain will decrease. These effects are important in determining how the same material can have different mechanical properties.
Heat Transfer in Foam Plastics
Darin Pugne, Michael Mitchell, May 2001
Predicting insulating values in foam plastics have been difficult because of variations in process, variations in geometry, and general lack of understanding in heat transfer. With this research, an attempt will be made to develop a systematic method of characterizing foam injection molded parts so that the parts can be designed to withstand thermal-mechanical loads that they would not be able to survive in normal operating conditions. Finite element analysis techniques will be used to help map actual heat transfer results. These results will then be compared to those measured through heat transfer experiments.
Optimization of the Pultrusion Process Using Thermodynamic Analysis
Matthew J. Heidecker, May 2001
In the pultrusion process, line speed is the primary measurement for process optimization. With the process being continuous, the fastest speed with no defects is seen as the production goal. Before optimal line speed can be determined, the amount of time required for commencement of the reaction must be obtained. Performing a thermodynamic analysis of the die is the first step in achieving this goal. Creating a computer simulation of this process using the results of the thermodynamic analysis is the objective of this research.
In Situ Observation of Fracturing Behavior of Polyethylenes by Transmission Electron Microscopy
Tatsuya Kasahara, Noboru Yamaguchi, May 2001
In situ observation of deformation and fracturing process of polyethylenes was carried out using a transmission electron microscope (TEM). It was found that there are three kinds of fracturing behavior concerning polyethylenes. In case of linear polyethylenes, two kinds of fracturing behavior caused by Crazing" and "Elongation" were observed. On the other hand low-density polyethylenes (LDPEs) having long-chain branches (LCBs) were fractured dominantly by "Interfacial splitting" of spherulites. These results show that the molecular structure of polyethylenes effects the deformation and fracturing behavior."
The Effect of Wall Slip on the Performance of Flat Extrusion Dies
W.A. Gifford, May 2001
Flat extrusion dies are commonly used in a wide variety of film, sheet and coating applications. Although flat dies can be designed to produce an exit flow distribution that is very uniform across most of the width, there will usually be a region along each side where it drops gradually to zero. This often requires trimming the edges of the film or sheet downstream in order to meet product specifications. It is commonly believed that treating the land area of the die with coatings that promote a small amount wall slip will reduce the size of this edge effect and therefore improve die performance. This analysis shows that slip over the entire land region of the die will adversely affect die performance. Better performance is possible but only if the sides of the land are treated.
FFT - An Efficient Process Analytical Tool for Plastics Film and Sheet Processes
Tan Srinivasan, May 2001
Every Plastics Film and Sheet Processor, whether using Calendering, Extrusion or Coating process, strives to manufacture the best quality product with minimal variations. The total variations in a product comprise of Cross Direction (CD) and Machine Direction (MD) variations. The Machine Direction variations can be further broken down into controllable Long-Term drift and uncontrolled Short-Term high frequency variations. Gauging Systems have been available in the Marketplace for quite a few years, which efficiently control the Profile (CD) and Long Term Machine Direction (LTMD) variations. This paper illustrates the capability of Gauging Systems that incorporate Fast Fourier Transform (FFT) feature to provide the plastics film & sheet processors with a timely and detailed analysis of the uncontrolled high frequency variations (Short Term Machine Direction (STMD) and the causes thereof. This efficient process analytical tool enables the processor to take timely action to reduce STMD, thus improving the overall product quality. The economic benefits to the plastics film & sheet processors derived from down-gauging, while meeting the specifications for end-use applications of the product can be substantial. This paper presents a case study of FFT application to a vinyl calendering process.
Optical Haze Properties of Polyethylene Blown Films: Part 1-Surface Versus Bulk Structural Considerations
Garth L. Wilkes, Matthew B. Johnson, Ashish M. Sukhadia, David C. Rohlfing, May 2001
In this paper we report on some recent findings regarding the factors affecting the optical (haze) properties of polyethylene (PE) blown films. The large majority of the contribution to the total haze in these blown films was a result of the surface roughness of the films, with the bulk (internal) contribution being relatively minor. Using several characterization techniques, we found, rather unexpectedly, that the surface roughness in some of these films was a result of the development of distinct spherulitic-like" superstructures formed during the blown film processing. Analysis of the rheological and molecular characteristics led us to conclude that in blown films of LLDPE-type resins the optical haze properties are adversely affected due to enhanced surface roughness caused by the formation of "spherulitic-like" superstructures in polymer melts that possess fast relaxing and low melt elasticity rheological characteristics."
Optical Haze Properties of Polyethylene Blown Films: Part 2-The Origins of Various Surface Roughness Mechanisms
Ashish M. Sukhadia, David C. Rohlfing, Matthew B. Johnson, Garth L. Wilkes, May 2001
In continuation of our associated report here (see Part 1, ANTEC 2001), we have now found that high haze in PE blown films can be caused by very different surface roughness mechanisms having unique origins. The total haze % exhibits a complex parabolic relationship with the logarithm of the recoverable shear strain parameter, ??. At low ??, spherulitic superstructures are formed. As ?? increases, an oriented, row-nucleated stacked lamella texture is developed. However, at even higher ??, fine-scale surface roughness due to high melt elastic instabilities is induced. We believe that this is the first time that both very low and very high melt elasticity have been shown as primary causative factors in yielding high haze in PE blown films, albeit for fundamentally very different reasons.
The Recycling of Thermoset Materials into Thermoplastic Composites
David D. Camlin, Matthew J. Heidecker, Sarah M. Reynolds, May 2001
Thermoset process scrap costs companies millions of dollars annually. Specific thermoplastics could benefit from the addition of recycled thermoset material. The incorporation of thermoset regrind into thermoplastic material would provide a viable alternative for the thermoset scrap that is currently sent to the landfills.
Developing Techniques for Fabricating Aluminum Molds with Cast-In Passages
Nathan Mitchell, Kate Milller, May 2001
This paper will explain the development of a new method for heating and cooling rotational molds with cast in passages. The goal is to develop a technique for manufacturing these molds that is cost competitive with conventional methods while maintaining the same ease of fabrication and common timeline. The mold will be used in conjunction with a hot oil rotational mold machine built at Penn State University-The Behrend College, Erie, PA.
Verification of Parison Sag and Swell with CAE Simulation Software
Michael D. McCullough, Charles A. Heid, May 2001
Parison sag and die swell are the most theoretical part of the extrusion blow molding industry. Both factors affect the wall thickness of the parison, and will add variation to the molded part. This study is part of ongoing research at Penn State Erie. After correlating data, a comparison will be drawn between CAE calculations and the actual extruded parison data. This research will quantify the parison sag and swell, and demonstrate the need to focus on parison geometry to yield accurate blow molding simulation results.
Recovery of Post-Consumer Plastic Waste via Solid State Mechanochemistry
Klementina Khait, Erin G. Riddick, John M. Torkelson, May 2001
A new solid-state mechanochemical technology is being developed to create value-added materials from post-consumer plastic waste. The process, called solid state shear pulverization (S3P), can recycle various mixtures of ordinarily incompatible plastics, including post-consumer film waste, by subjecting the polymers to high shearing forces in the solid state. This produces uniform, light-colored powders of variable fineness suitable for processing by all conventional plastic fabrication techniques. The resulting materials consistently exhibit high elongation and impact strength. Northwestern University and Material Sciences Corporation are transitioning S3P from the laboratory to the commercial scale.
Confocal Laser Scanning Microscopy of Pigmented Polypropylene Systems for Dispersion Evaluation
Erik C. Nielsen, May 2001
Determining the level of dispersion of pigments in polyolefins is a critical quality control issue in the production of color concentrate masterbatches. Confocal laser scanning microscopy (CLSM) can be used to identify the presence of agglomerates in the pellet form rather than diluting the material and blowing a film. This technique requires minimal sample preparation and is non-destructive in nature. Micrographic images can be correlated with traditional dispersion tests to develop a repeatable protocol. Four commonly used high performance pigments are investigated in a polypropylene carrier.
VOCs Emissions and Structural Changes of Polypropylene during Multiple Melt Processing
Q. Xiang, M. Xanthos, S. Mitra, S.H. Patel, May 2001
Polypropylene, as a commodity recyclable thermoplastic, is studied in this research to evaluate the potential environmental impact resulting from volatile organic compounds (VOCs) emitted during multiple reprocessing. Unstabilized commercial polypropylene (PP) grade was processed several times by injection molding. Samples were examined after each cycle for total VOCs emissions with a flame ionization detector (FID) and cumulative VOCs emissions were obtained after each processing step. Corresponding structural changes were investigated with Fourier Transform Infrared (FTIR) Spectroscopy and results were correlated with rheological data that showed decreasing viscosity particularly after the 7th processing cycle.
Extrusion Foaming of PET/PP Blends
C. Wan, M. Xanthos, S. Dey, Q. Zhang, May 2001
In order to develop new applications for recyclable commingled resin streams, blends containing PET and PP resins with different rheological characteristics were dry blended or compounded at different ratios and subsequently foamed by using PBAs and CBAs. Properties of the foamed blends were compared with those of similar products obtained by foaming the individual PET and PP components in the absence of compatibilizers/rheology modifiers. Foamed polymer blends with fine cell size and low density could be produced in the presence of suitable compatibilizer systems consisting of functionalized polyolefins or their combinations with reactive coagents


This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.




spe2018logov4.png
  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net