SPE Library


The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 


Search SPE Library
    
    




Sort By:  Date Added   Publication Date   Title   Author

Conference Proceedings

Cryogenic Microcracking of Carbon Fiber/Epoxy Composites: Influence of Fiber Type
John F. Timmerman, Matthew S. Tillman, Brian S. Hayes, James C. Seferis, May 2001

Cross-ply laminates were created from model prepregs and evaluated to determine their response to cryogenic cycling. The tensile modulus of the carbon fibers was varied to alter the composite material's properties. Examination of the laminates after cycling provided insight into the mechanism of thermal stress-induced microcracking. Optical microscopy revealed that increasing the tensile modulus of the fibers resulted in a corresponding increase in the degree of microcracking that occurred in the composite.

Microporous Polyolefin Film for Battery Separator
Jang-Hoon OH, May 2001

An experimental study was performed on how microporous polyolefin film was made and how it could be used as battery separator. Effect of various processing variables on the microporous film properties was investigated. To get better microporous film various conditions were to be optimized. Microporous film having smaller pore size, higher porosity and shut down capability was obtained.

Thermal Effusivity as a Void or Delamination Measurement
Christina Chandler, Nancy Mathis, May 2001

Thermal effusivity has been measured on materials that include carbon-carbon aerospace composites, air ship fabric and thin rubber materials. The effusivity, which multiplies thermal conductivity, density and heat capacity, was found to be sensitive to the presence of voids or delamination in the products. The presence of air in the delamination lowers the effusivity as the air has lower thermal conductivity, density and heat capacity when compared to the sample. This triple sensitivity has applications for on-line QC detection during production.

Polymer Kit Project for Grades K-12
Melvin I. Kohan, May 2001

A 5-year Polymer Kit Project (PKP) to bring the story of polymers into the precollege curricula is nearing conclusion. The goals, concepts, guidelines, and problems have been reported previously [1-3] and are briefly reviewed here. The progression in the treatment of five basic concepts as the lesson plans proceed from grade K to 9 is described in this paper.

Composite Tooling for Injection Molding
E. Kent Dawson, John D. Muzzy, May 2001

Aluminum, ceramic, and high conductivity carbon fiber have been used to cast composite injection molds with superior thermal and mechanical properties. Heat transfer and dynamic mechanical analysis experiments showed improved conduction and glass-transition temperature compared to traditional epoxy and stereolithography-based tooling. The master pattern was produced using stereolithography and multijet prototyping technologies. In injection molding experiments, the composite tools required less total cycle time than a comparable stereolithography tool.

Fracture of a TPE Catheter
P.R. Lewis, May 2001

A nylon/polyether TPE catheter fractured during the final stages of childbirth in a British hospital. The catheter supplied an epidural anaesthetic to the patient, and part of the tip was left in her spinal fluid. She sued the hospital and manufacturer. The catheter showed brittle behaviour, and research showed that it was probably caused by a combination of UV and gamma radiation of the polymer, initiating chain degradation. ESEM of the fracture surface showed no cut marks, as suggested by another expert witness. FTIR microscopy showed traces of esters near the fracture, confirming degradation.

Meeting Global Trends for Automotive Coatings
Charles D. Storms, May 2001

The paper deals with both macro trends in the way global business is done today and specific trends in functional and decorative coatings. Today's economics and system trends are driving unified products, universal quality, one-performance criteria, shortened life cycles, and local production for supply and technical service. Alliances are used to gain additional resources and to reduce overall R&D costs. The goals and benefits of Alliances are described. Plastics substitution is driving new applications for coatings. Global performance and appearance trends will influence these new applications.

Heat Transfer Decorating: Past - Present - Future
Keith Hillestad, May 2001

This paper will provide a close look at how and why heat transfers are being used as a way to decorate plastic components. I will start with the history of heat transfers and then look at the advancements in the manufacture and application of heat transfers. I will review the tooling, supplies, and equipment required for successful application of heat transfer programs and discuss the various industries that they are used in today.

Use of Selective Laser Sintering for the Function Testing of Snap-Fits
Anthony F. Luscher, May 2001

Snap-fits have been a popular method of mechanically attaching plastic parts. Design of snap-fits, however, is still a very high-risk activity since testing cannot be done until first article parts are molded. This paper presents the authors experience in using SLS prototype parts for the design and testing of snap-fit assemblies. Examples cited include an automotive fuel system component, an optical lens housing, and two novel snap-fit topologies. The success and limitations of these efforts are discussed as well as typical experimental data.

The Early Use of Process Simulation to Optimize the Wall Thickness of Blow Molded Plastic Parts
Peter Gust, Olaf Bruch, May 2001

The variable method of extrusion blow molding is widely used for the production of plastic hollow bodies. The primary target of the paper is the early and complete use of computer aided techniques in advance for the development of new commodities. The use of the new tool PreBlow" for the calculation of realistic wall thickness distributions using machines under recognition of different wall thickness adjustment methods will show realistic simulations. Conclusions are provided together with industrial examples."

Plastic Material Modeling for Vehicle Crash Simulation Using LS-DYNA
Xinran (Sharon) Xiao, May 2001

In commercial codes, the modeling of plastic materials lags behind compared to that of many other materials. As a result, engineers have been using material models developed for metal to model plastic materials. This paper discusses the stress-strain behavior of thermoplastics relevant to crash simulation, examines the plastic material modeling capability of a commercial code LS-DYNA and presents needed model enhancements.

Controlling Balanced Molding through New Hot Runner Manifold Designs
John P. Beaumont, Kevin Boell, May 2001

Shear induced variations created during flow results in variations between parts produced in many of today's conventional geometrically balanced hot manifold designs. Understanding of these shear imbalances has led to new design strategies which address these variations and provide both uniform filling and uniform material conditions to each cavity.

Graphic Film Inserts for Molding
Jeff Applegate, May 2001

There are many methods to decorate plastic films. As an overview, I will highlight most of the methods used to decorate plastics in post mold operations and in mold operations.

Film Finishing Part II: Use of Multi-Layer Films in Finishing Technologies
Thomas M. Ellison, May 2001

Part I of this two part series addresses the background of film finishing, its status and the strategic potential for the technology. Part II is concerned with the materials and processes used in multilayer film production. Film application methods are reviewed from an overview perspective.

Micro-Photometric Inline Particle Monitoring in Flowing Melt (TSE)
M. Stephan, M. Stintz, A. Rudolph, U. Blankschein, May 2001

A unique particle sensing system will be presented based on a special micro-photometric principle. The final objective is to achieve inline / realtime informations about developing and final stage of particle dimensions in flowing polymer melts. The performance of the new sensor prototytype PMP 690 adapted to a twin screw extruder (TSE, ZSK40-type) will be demonstrated by extrusion mixing of different model glass bead types (particle diameters and volume concentrations) into polystyrene melt.

Do You Want Some Salsa with Those Chips?
Bruce M. Mulholland, May 2001

In the world of coloring plastics, there has been an apparent decline in the understanding and application of color technology. This is particularly noticeable the farther down and away from the source of the colored product you go. Retirements, downsizing, consolidations and other factors have contributed this knowledge base loss. This paper looks at this issue and what we can do to build it back up.

How Social and Cultural Influences Affect Automotive Design, Styling and Decoration
Larry DeBow, Edward Assad, May 2001

A discussion of how social and cultural influences in fashion, architecture, interior and product design affect automotive design, styling and decoration, and how these influences are brought to reality.

Developing a System to Activate a Post-Molding Blowing Agent in the Application Field
Alicyn M. Haney, Kate L. Miller, May 2001

This experiment creates a process which allows injection molded parts to be foamed during assembly applications, resulting in optimal airtight sealing properties at the plastic interface.

Modification of Epoxies for Low Friction
Witold Brostow, Patrick E. Cassidy, Haley E. Hagg, Magdalena Jacklewicz, Pablo E. Montemartini, May 2001

The morphology, elastic modulus, and friction properties of a commercial epoxy resin + fluorinated poly(aryl ether ketone) (12F-PEK) system have been studied. The system was cured at 24°C and 70°C. We achieved significant friction lowering, namely 30% less than the value for plain epoxy, at the 12F-PEK concentration of only 10% after curing at 24°C. By contrast, after curing at 70°C, an increase in both static and dynamic friction is observed.

Correlating Creep Data with High Temperature Tensile Testing
W. Scott Miller, May 2001

Obtaining accurate creep data can be time consuming when the material supplier does not publish it. A faster method of predicting creep behavior could be a benefit when designing plastic products that will encounter long term loading. This experimental study will examine the feasibility of using elevated temperature tensile testing data as a means for predicting the tensile creep behavior of general-purpose acrylonitrile-butadiene-styrene (ABS). Injection molded specimens will undergo tensile testing at elevated temperatures for comparison to the respective tensile creep curves.










spe2018logov4.png
  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net