SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library
After Date: (mm/dd/yy)  
Sort By:   Date Added  ▼  |  Publication Date  ▼  |  Title  ▼  |  Author  ▼
= Members Only
Conference Proceedings
Polymer Melt Flow Behavior in the Coinjection Molding Process
K.T. Nguyen, E. Turcott, A. Derdouri, D. Ait Messaoudz, B. Sanschagrin, B.A. Salanton, K.A. Koppi, May 2000
An experimental study of the co-injection molding process was carried out. The fingering instability due to the difference in viscosities of the two materials gave rise to early breakthrough of the core material and non- uniform skin layer thickness. The core material was also used as tracer material for flow visualization of the injection molding process. The V formation near the wall as well as the mushroom effect, previously predicted, was observed.
Improving Polyethylene Performance - The Use of Metallocene Catalysed Polyethylene in Injection Moulding
M.J. Murphy, P.B. Kelly, G.M. McNally, M.P. Kearns, May 2000
A range of medium density, metallocene catalysed polyethylenes (mPEs), and conventional polyethylenes (PEs) were injection moulded using different mould cooling conditions. The results for the metallocene polyethylenes show significant improvements in impact and tensile performance. Increases of over 200% in tensile elongation for metallocene PE resins over the conventional PE resins were recorded. D.S.C. analysis shows the metallocene PE resins to be more crystalline in nature than the conventional polyethylenes.
Orientation Recovery in Biaxially Oriented Amorphous Polymer Films
C.C. Chau, W. LaFollette, May 2000
The dimensional recovery of biaxially oriented polystyrene and high impact polystyrene films was found to follow dual second order kinetic processes that took place in parallel. The early stage of the recovery involved major dimensional changes with a high rate constant and is likely related to the recovery of main chain orientation. The later stage process gave smaller dimensional changes with a low rate constant and is not directly related to the main chain orientation. This study indicated that the orientation in amorphous polymer films could be examined by understanding the kinetics of thermal recovery.
On-Line Material Characterization during Extrusion of Recyclates
Thomas Schubert, Gottfried W. Ehrenstein, May 2000
Unknown properties of recycles are the problem in the field of recycling thermoplastics. The off-line determination of selected properties (basicpolymer, colour and mechanical properties) is not sufficient to qualify recyclates. Important for the characterization is an almost complete knowledge of the material properties when producing recyclates that are supposed to be competitive as construction materials. Therefore the implementation of tools for the detection and assurance of material properties on-line during extrusion is a promising conception. This presentation shows and discusses the basic ideas of on-line property determination, the achieved results of material determination, and the resulting process control.
Evaluation of the Interfacial Tension between a Low Molar Mass Liquid Crystal and Solid Polymers
Renato Norio Shimizu, Nicole Raymonde Demarquette, May 2000
The surface tension of a low molar mass liquid crystal (LMMLC) was measured as a function of temperature (56.0°C to 79.5°C), using the pendant drop method. The surface tension presented a behavior described by two distinct curves for the different phases (isotropic and nematic). Also the contact angles of LMMLC on plates of PS and of a liquid crystal polymer were measured at different temperatures (from 62.4°C to 89.0°C). The angle presented a discontinuity nearby the nematic to isotropic transition temperature when measured on PS, whereas it remained constant on the LCP. The interfacial tension between the LMMLC and the polymers were estimated.
Influence of Process Parameters on the Phenomenon of Stress Cracking during Hot Plate Welding
H. Potente, J. Schnieders, May 2000
Heating experiments were carried out in order to investigate the significance of the different process parameters on susceptibility to stress cracking. With the help of wetting tests, different crack lengths were generated in the heated sheet and subsequently compared with the various process parameters by means of multiple regression analysis. Another focal point is the estimation of the normal stress difference (?x – ?y) at each point of the specimen by means of 2D photoelastic stress analysis. In both cases the marked correlations between the process parameters and the phenomenon of stress cracking are recognisable, and the results can be used to minimise stress cracking.
Structure-Property Relationship in Poly(phenylene sulfide)(PPS)/Polyethylene Blends-Effect of Metallocene Catalyzed Polyethylene
Bo Sun Lee, Byoung Chul Chun, May 2000
In this investigation, blends of poly(phenylene sulfide)(PPS) with two types of polyethylene such as linear low density polyethylene(LLDPE) and metallocene catalyzed polyethylene(MPE) were prepared by melt blending. First, rheological behavior was determined using a capillary rheometer. The melt viscosity of PPS/LLDPE and PPS/MPE blends was low when PE was a dispersed phase. However, when PPS was a dispersed phase, increased melt viscosity was observed. This tendency was similarly observed in mechanical properties such as percent strain at break and notched Izod impact strength. Also, the mechanical behavior of PPS/LLDPE and PPS/MPE blends showed negative deviation from the rule of mixtures relationship when PE was a dispersed phase. But the negative deviation for PPS/MPE blend was less than that for PPS/LLDPE blend. Also, the dispersed phase morphology was analyzed using scanning electron microscope(SEM).
Factors Influencing the Sorting Efficiency of Commingled Post-Consumer Bottles Using an Automated Sorting System
Robert Dvorak, Edward Kosior, Pio Iovenitti, Syed Masood, May 2000
This paper examines the effects of high throughput rates in a spectroscopic bottle sorting system, on the purity of PET and HDPE end-products as well as other key factors such as an increase in material loss, decrease in % material yield and the need for extra manual sorting staff at higher throughput rates. Increasing the throughput rate of a wide belt bottle sorting system from 1,000 kg/hr to 2,000 kg/hr decreased the purity of HDPE by 17% and that of PET by 2%. Material loss had more then doubled for PET from 12% to 32% and for HDPE increased from 8% to 9%. The end-product yields for HDPE and PET had decreased by 3% and 8% respectively. One of the key improvements to the sorting operation was the development of an automated sensor cleaning system, which uses an automated film rotating mechanism.
Relative Dimensional Change of Various Nylon Products Due to Moisture Absorption
Steve Gerbig, Bonnie Richter, Brian Helfrich, May 2000
In plastic materials published data, moisture absorption is almost always expressed in terms of percent weight gain. While this information is important for comparison purposes, it doesn't truly relate to the design engineers' application and use of these materials. This study will quantify and compare the relative dimensional changes which occur in parts as they are exposed to a humid environment and move from the dry-as-molded state toward saturation using nylon types 6, 66 and 46.
Effects of Various Fillers on the Coefficient of Thermal Expansion of Epoxy Resins
Glenn E. Lawson, May 2000
It has long been recognized that the predictive ability of the rule of mixtures for coefficient of thermal expansion (CTE) is less than desired. It ignores the elastic interaction and restraint between the matrix and the filler, hence yielding values that are too high. The predictive ability of the rule of mixtures and three other theories are compared to actual measured CTE values of over 90 particulate filled epoxy formulations. It has been found that the Kerner theory can predict the CTE within 8 ppm/°C at the 95% confidence interval for the epoxy systems evaluated.
Injection Molding Cycle Time Reduction Using an Advanced PC/ABS Blend
Cheryl L. Weckle, Dick P. Lauer, Blair S. Patty, Hoang T. Pham, May 2000
An advanced PC/ABS blend has been developed offering reduced cycle times for injection molding applications, and thus creating economic value for the molder. This material has improved flow as compared to traditional PC/ABS blends, yet it is designed for high toughness. The results of molding trials demonstrate injection pressure and melt temperature can be reduced, ultimately resulting in reduced cycle time and improved manufacturing cost. Physical properties and desired part performance criteria, such as heat resistance and low temperature ductility, are maintained.
The Development of Weld Line Strength in Injection-Molded Poly(methyl methacrylate)
Anne K. O’Brien-Soucy, Carol M.F. Barry, Ross G. Stacer, May 2000
An experimental investigation has been conducted to evaluate various approaches to modeling weld line development during the injection molding of amorphous plastics. A series of poly(methyl methacrylates) (PMMA) representing several different molecular weights were molded both with and without weld lines over a range of processing parameters. Results were compared with the predictions of several previously proposed isothermal models. These were found to be insufficient to explain all the phenomena observed. A non-isothermal model is developed to provide an improved predictive capability. This non-isothermal approach combined with fracture mechanics leads to a new physical interpretation of weld line morphology and its contribution to the resultant strength of the welded part.
Rheological Characteristics of Polymer Blends
Roberto Guimarães Pereira, Alexandre Alves Costa Oliveira, May 2000
This work presents an experimental observation of the rheological characteristics of the TPE/SB blend (Thermoplastic Elastomer / Styrene-Butadiene) used in the plastic transformation industry for medical applications. The flow curves (shear viscosity x shear rate) of the blend were investigated at different temperatures and in a wide range of shear rates. During the extrusion, the instability phenomenon (melt fracture) and its relation with the shear rate and temperature parameters was also investigated. All the experiments, the flow curves and melt fracture observation, were performed in a Capillary Rheometer ( a Rosand Rh-2100 capillary rheometer) working with a 1 x 16 mm rod capillary die.
Evaluation of Liquid Gas-Assisted Injection Molding
Doyoung Moon, Seungwook Lee, Donghak Kim, May 2000
Gas-Assisted injection molding has been applied successfully in plastic industry within last 10 years. Liquid gas-assisted injection molding (LGAI) is a good alternative of conventional gas-assisted injection molding process. In LGAI process, a liquid is injected under low pressure into the melt stream. The liquid vaporizes and pushes the melt downstream and creates hollow channels within part. HELGA® patents this process originally. We had evaluated this process with different-type molds and liquid nozzles that we develope. Finally, we compared the LGAI process to the conventional gas-assisted injection molding process.
Surface Enrichment in Polymer Blends Involving Hydrogen Bonding
Yuzhi Duan, Eli M. Pearce, May 2000
Poly(4'-hydroxyl-4-ethylphenylsiloxane)(PHEPS) has been synthesized via hydrosilylation followed by hydrolysis. This polymer, hydrogen bonding donor, was blended with three kinds of hydrogen bonding acceptors that include poly(4-vinylpyridine) (PVPy), poly(acrylonitrile) (PAN) and poly(ethylmethyacylate) (PEMA). The surface enrichment with PHEPS, which has lower surface energy, was characterized by X-ray Photoelectron Spectroscopy (XPS). The effect of the strength of hydrogen bonding interaction on the surface compositions of the blends was studied. The results showed that surface enrichment in miscible polymer blends was responded to the balance between the differential in the surface energy of the constituents and the bulk enthalpic interactions.
The Effect of Chemical Blowing Agent Dosage on the Properties of Extruded Expanded Polypropylene
Dorian Dixon, P.J. Martin, E. Harkin-Jones, May 2000
This paper investigates the influence of CBA (chemical blowing agent) concentration on the properties of extruded EPP (expanded polypropylene) rod samples. A design of experiment methodology was adopted to quantify the effect of CBA (endothermic type) dosage on EPP properties. Foam characteristics measured, were density, cell structure, tensile properties, premature foaming, and extrusion parameters (melt temperature and pressure). The research revealed that an optimal blowing agent concentration of 0.5% exists in terms of obtaining the finest cell morphology and most efficient material savings/density reduction.
Reactive Extrusion of Polyolefin Blends
Claudia M.C. Bonelli, John M. Pochan, T.H. Mourey, Eloisa B. Mano, Charles L. Beatty, May 2000
The incompatibility of polypropylene (PP) and high density polyethylene (HDPE) is a source of industrial problems for recycling post-consumer polyolefins. Blends of PP and HDPE with peroxide and 3 vector fluid additives have been prepared in a co-rotating reactive twin-screw extruder. Compatibilization has been examined by stress-strain tests, impact tests and scanning electron microscopy (SEM). Molecular weight of the blends has been evaluated by gel permeation chromatography (GPC). An increase in elongation at break and impact resistance of some reactive blends compared to the mechanical blend was observed, with some links between the phases, as revealed by SEM.
A New Impact Modifier for Toughening Clear APET
Edward J. Troy, Anthony C. Fazey, Evan Crook, May 2000
Polymers, as well as glasses, exhibit physical 'aging' which leads to embrittlement. Impact modifier additives counteract this embrittlement. In clear polymer systems, such as amorphous polyethylene terephthalate [APET], blends with typical commercial impact modifiers show a significant loss of optical clarity. The work presented here, based on a new impact modifier additive, shows that embrittlement of APET can be counteracted without significant loss of optical clarity.
Fractography of ABS
Hiromi Kita, Masatoshi Higuchi, Atsushi Miura, May 2000
Fractograpy of different types of ABS has been studied in static and cyclic loading at different ambient temperature. The effects of repeated loading, notch, grades, loading level and ambient temperature on the fracture surfaces have been discussed on the basis of the phenomena of striations, tear lines, fracture origin and stress whitening patterns.
Using CMM Data to Quantify Sink Marks
Kris Horton, Mitchel Keil, Paul Engelmann, David Lyth, Michael Monfore, May 2000
For years decisions have been made about the acceptability of a molded part based upon subjective assessment of attributes such as sink marks. The mechanisms that cause sink are well documented. Yet sink marks continue to be a leading cause of rejected products. This research focused on developing a repeatable measurement technique for objectively quantifying the depth of sink marks. Following preliminary investigation, a coordinate measuring machine (CMM) was employed.

This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.

  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net