SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library

Sort By:  Date Added   Publication Date   Title   Author

Conference Proceedings

Effects of Processing Conditions on the Failure Mode of an Aliphatic Polyketone Terpolymer
Nicole R. Karttunen, Alan J. Lesser, May 2000

The yield and failure response of an aliphatic polyketone terpolymer subjected to multi-axial stress states has been studied, with a focus on the effects of processing conditions on the failure mode. Testing has been performed on anisotropic hollow cylindrical samples of this semi-crystalline thermoplastic material. Samples were processed under 5 different extrusion conditions. It was found that the cooling rate has some effect on the failure mode, while the rate of extrusion is less significant. Possible processing effects that may account for the differences in behavior include residual stress, amorphous orientation, or crystal morphology.

Cover Part as an Application Example for Gas-Assisted Injection Molded Parts
Michael Hansen, May 2000

The gas-assisted injection molding process is in use now for several years offering new technical and creative possibilities for injection molding. After a brief survey of the principle sequence of the process and basic process physics this paper comments on an application example for a cover part and provides solutions for the problem s found during the process of fixing existing issues on this tool.

Magnetic Resonance Imaging of Polymer Melt Flows
Yusuf Uludag, Michael J. McCarthy, Robert L. Powell, Geoffrey Barall, May 2000

A tubular rheometry that is based on obtaining velocity profiles by nuclear magnetic resonance imaging (NMRI) and measuring pressure drop of the flow is used for the polymer melts. This technique allows one to get viscosity data potentially over many decades of shear rate region in a single measurement. In this study, we examined polyethylene melt as the flow medium. Despite the low shear rates attained, our results reveal that this non-invasive and non-destructive method is promising for constructing an on-line polymer melt rheometer.

Relaxation Model for FE Analysis of Plastic Product Behavior
Ihor D. Skrypnyk, Jan L. Spoormaker, May 2000

The non-linear creep-based models cause numerical instabilities during FEA calculations because of the necessary inversion of stress-strain relations. From this point of view, the relaxation-based models are preferable for use within FEA. On the other hand, engineers avoid such models, due to complicated tests. Therefore, the goal was to develop the non-linear relaxation model, which uses the data of creep-recovery tests. In this way the model would be comparatively inexpensive and unconditionally stable in FE calculations.

Toughness Enhancement through Conversion of Cyclic Polybutylene Terephthalate to Linear PBT
Sam Miller, James Donovan, William MacKnight, Roger Kambour, May 2000

The fracture toughness of macrocyclic polybutylene terephthalate (simple ring molecules) and linear PBT is correlated with the size of the plastic zone at the crack tip, which is inversely related to the yield stress. Macrocyclic PBT (c-PBT) molecules have a lower melt viscosity than linear molecules of comparable molecular weight, making them easier to process. However, the cyclic molecules are highly crystalline, with a high yield stress, and consequently a lower toughness. A ten-minute heat treatment in the melt opens the rings, and allows molecular entanglement, causing lower crystallinity of the solid polymer, and increased toughness. Therefore, control of the molecular structure of PBT provides a polymer with low viscosity that can be toughened by an easy heat treatment.

Effects of PP-MMA Alloy and Impact Modification on Weathering Performance of Polypropylene
T.A. Glogovsky, M. Finnegan, May 2000

The weathering performance of polypropylene and a novel polypropylene/acrylic alloy with and without impact modifier was investigated. Accelerated weathering testing was completed using Xenon Arc Weather-ometer. Surface cosmetics (gloss and color change), microscopy, and FTIR were used to characterize the surface and bulk properties after exposure to accelerated weathering. Dramatic improvements in weathering performance were observed through the addition of propylene/acrylic alloys and a proprietary impact modifier to the base polypropylene homopolymer. The individual significance of the propylene/acrylic and the impact modifier on weathering performance were similar. The benefit observed with weathering when combining the propylene/acrylic alloy and proprietary impact modifier was additive with respect to weathering performance.

Prediction of the Weld Lines in Injection Molding Process Using Neural Networks
Faezeh Soltani, Souran Manoochehri, May 2000

A model is developed for the prediction of the weld lines in injection molding process. The position of the weld lines in a multigate cavity system, with holes and/or inserts in the part, are predicted using a neural network-based back propagation algorithm. The neural network was trained with data obtained from simulation and actual molding experimentation. For a number of test cases, the performance of the method is investigated on comparing predicted weld lines with those obtained using a complete mold filling simulation. It was found that the proposed method can predict the position of the weld lines with a good accuracy as compared to the filling simulation. Applying the neural networks reduced the amount of computational time and eliminated the pre/post processing time as compared to simulation methods.

The Effects of Mold Filling on Living Hinge Performance
Patrick J. Brannon, Bart LiPetri, Carol M.F. Barry, May 2000

Filling characteristics of polypropylene living hinges and their performance were compared in order to create a model that will predict the quality of living hinges. In this study, three filling characteristics correlated to hinge quality: melt front advancement, skin orientation, and hinge fill time percentage. First, the melt front advancement; should be parallel to the axis of hinge rotation and free from discontinuities. Then, the skin orientation must be perpendicular to the hinge's axis of rotation. Finally, the most critical parameter was the hinge fill time as a percentage of the fill time for the part.

Applications of Gas-Assisted Injection Molding and Injection/Compression Molding in Thinwall Molding
T. James Wang, Shia-Chung Chen, H.H. Chiang, May 2000

Gas-assisted injection molding (GAIM) and injection/compression molding (ICM) processes are studied and compared with the injection molding (IM) process for thinwall applications (also called thinwall molding). In this paper, analysts for these three processes arc carried out. A cellular phone part will be used as an example. Analysis results will be reported and comparisons of these three processes will be made. Injection pressure, clamp force and deformation will be used to evaluate these processes. Injection pressure and clamp force reduction in the GAIM and ICM processes and their effectiveness in packing will be emphasized.

Warpage Analysis of Solid Geometry
Z. Fan, R. Zheng, P. Kennedy, H. Yu, A. Bakharev, May 2000

The requirement to create a shell model on the midplane of the part for warpage analysis is at odds with the trend toward solid modeling. A method is introduced that enables warpage analysis without the midplane model. This ensures that the user interacts only with the solid geometry. In this paper we present results obtained with the new technique and compare them to those obtained on a midplane model.

Assessment of Opportunities to Produce Distributed Multilayer Film Microstructures in Thermoplastic Blends by Chaotic Mixing
O. Kwon, D.A. Zumbrunnen, May 2000

Chaotic mixing of binary components has been recently used to produce and distribute fibers, multi-layer films, and fragmented sheets in melts. Formation mechanisms and means to promote one type over the other remain uncertain. In this study, in situ film formation and breakup in PS/LDPE blends was examined for differing extents of mixing. Results demonstrate new opportunities to develop distributed multi-layer films during blending processes.

A Novel Additive for PP Fiber
Olga I. Kuvshinnikova, Robert E. Lee, Nick A. Favstritsky, May 2000

The purpose of this paper is to present the data on UV stabilization of flame retarded polypropylene fiber. The evaluation was conducted by exposure in the xenon arc weatherometer @ 63°C under dry conditions. Proprietary additives provided unique physical property retention for flame retarded polypropylene fiber.

Thermoplastic Paint (a.k.a. Film Finish, Paint Film, Dry Paint): A Complementary Technology for Exterior Automotive Plastic
Thomas M. Ellison, Stephen P. McCarthy, Arthur K. Delusky, May 2000

Thermoplastic film technology and a new plastic molding process, under development in a joint effort by ValTek and U Mass Lowell, combine to offer reductions in system cost, total emissions and weight for automotive Class A" exterior panels in the new millennium. The recyclable structural panels are fabricated using Class "A" film finishes in one step and targeted for vertical and horizontal automotive panels."

Shrinkage and Warpage Analysis of Injection-Molded Parts
T. James Wang, C.K. Yoon, May 2000

Hot polymer melt shrinks when it is injected into the cold mold cavity. In the injection molding process, pressure is high near the polymer entrance and low at the last-fill location. The polymer temperature is low near the mold wall surface and high at the core region. Because of these two types of non-uniformity, the part will shrink differently at different planar and thickness locations. This causes warpage. Different process conditions will result in different non-uniformity. In this study, the effects of packing time, packing pressure, fill time and mold wall temperature will be discussed. Computer-aided engineering (CAE) and design of experiment (DOE) will be carried out first. The process window will be investigated. Experimental results will also be reported.

Quantitative Relationships between the Parameters of Thermal Degradation of Polyvinyl Chloride and the Loss of Mechanical Properties
Susheel Ramesh Deshmukh, Francis Lai, May 2000

Thermal degradation of polyvinyl chloride (PVC) was studied to obtain quantitative relationships between temperature and duration of polymer degradation and the corresponding loss of tensile strength, flexural modulus, and impact strength. Test specimens of rigid PVC containing different concentrations of dibutyltin bis(isooctylthioglycolate) and barium-cadmium stearate were subjected to five different temperatures for five different durations. The selected test properties were determined before and after degradation. Percentage property retention was plotted against logarithm of heating time. Values of log heating time corresponding to acceptable levels of property retention obtained from these plots were then plotted against temperature to obtain Arrhenius-type relationships between the parameters of thermal degradation and the deterioration of properties.

Dielectric Relaxation Spectroscopy of Reactive Network-Forming Polymers
Maja Mihajlovic, Jovan Mijovic, May 2000

Dipole dynamics in network-forming polymers were investigated by broadband dielectric relaxation spectroscopy (DRS). The changes in reorientational dynamics during the advancement of reactions were used to (1) describe the molecular origin of various relaxation processes (?,?), (2) describe the dynamics in terms of the location and intensity of relaxation spectrum, and (3) advance an interpretation of network dynamics in terms of intermolecular cooperativity. The chemical state of network at various stages of cure was identified by simultaneous DRS and remote fiber-optic FTIR.

Injection Molding Process Simulation: A Productivity Tool for the Processor
Torsten Kruse, May 2000

To be productive as an injection molder you have to be innovative in using new technologies. To produce a high quality molded part you need a well designed part and mold, a molding cell which is able to mold the part within it’s specification, a plastic material which is produced to tight specifications and employees who are well trained. Would it be nice to train employees on how to run, optimize and troubleshoot a molding machine in a classroom environment and not on the production floor. On the production floor in order to make money the machines have to run and produce. A process simulator can fill the gap between learning theoretical knowledge and hands-on molding.

Enzymatic Template Synthesis of Processable Polyphenol
Ferdinando F. Bruno, Ramaswamy Nagarajan, Jena S. Sidhartha, Ke Yang, Jayant Kumar, Sukant Tripathy, Lynne Samuelson, May 2000

Phenolic polymers and phenol formaldehyde resins are of great interest for a number of electronic and industrial applications. Unfortunately, the toxic nature of the starting materials (formaldehyde) and extreme reaction conditions required for the synthesis of these polymers have severely limited their use in today's markets. We present here an alternative, biocatalytic approach where the enzyme horseradish peroxidase is used to polymerize phenol in the presence of an ionic template. Here the template serves as a surfactant that can both emulsify the phenol and polyphenol chains during polymerization and maintain water solubility of the final polyphenol/template complex. The reactants and conditions of this approach are mild and results in high molecular weight, electrically and optically active, water-soluble complexes of polyphenol and the template used. Polystyrene sulfonate, lignin sulfonate and dodecyl benzene sulfonate (micelles) were the templates investigated in this study. In each case, soluble polyphenol complexes were formed with molecular weights ranging in the millions. Thermal analysis and UV-Vis spectroscopy shows that these complexes have exceptional thermal stability and a high degree of backbone conjugation. Conductivities on the order of 10-5 S/cm and a?(3) of 10-12 esu are also observed. In the case of the SPS template under certain conditions, a sol gel complex may be formed. This enzymatic approach offers exciting opportunities in the synthesis and functionalization of a new class of processable polyphenolic materials.

High Velocity 3 Point Bending Test Using an Impact Tower
Francois Barthelat, Hubert Lobo, May 2000

The idea of using an impact tower for 3-point bending for polymer testing has been developed before [1]. In this work the experimental method is refined. The vibrations are reduced by removing the ends of the specimen and by using a smaller span. Results are presented for a polypropylene. The modulus and the yield stress increase with strain rate, as predicted by viscoelastic consideration and by the Eyring theory for the yielding of polymers.

Coloration of Polytrimethylene Terephthalate Fibers with Pigments and Polymer Soluble Dyes
Roger Reinicker, Adriano Pangelinan, Imrich Greschler, May 2000

Polytrimethylene terephthalate (PTT) is a recently commercialized polymer with both demonstrated and potential for increasing use in fibers for carpets and textiles. It is both dyeable in the conventional sense but also readily colored in the melt phase with pigments and polymer soluble dyes. This paper explores the methods used to mass color (solution dye) PTT, the pigments and dyes that can be employed, and the color and fastness results obtained with eleven selected colorants.

  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net