SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library
Keyword/Author:
After Date: (mm/dd/yy)  
 
Sort By:   Date Added  ▲  |  Publication Date  ▲  |  Title  ▲  |  Author  ▲
= Members Only
Sustainability
Various topics related to sustainability in plastics, including bio-related, environmental issues, green, recycling, renewal, re-use and sustainability.
DEGRADATION BEHAVIOR OF HEMP FIBER REINFORCED THERMOSETTING POLYMER
Shoko Toyoyama , Tomohiko Sugie , Yuka Kobayashi , Asami Nakai , Hiroyuki Hamada, May 2010
Natural fiber-reinforced composites are very attractive due to environmental considerations. There are currently many types of natural fibers that are suitable to be used as reinforcement in polymer composites. In this paper hemp fiber mat was selected to be the reinforcement for unsaturated polyester resin. In order to determine the long-term water resistance of this composite specimens were immersed into hot water.Weight changes of the specimens were recorded with time and their respective mechanical properties were determined through bending tests. A correlation was established between moisture absorption and mechanical performance of the composites.
DEVELOPMENT OF AN ACTIVE AGENT CARRYING, BIODEGRADABLE IMPLANT FOR THE INTRAVESICAL THERAPY OF THE OVERACTIVE BLADDER SYNDROME
Walter Michaeli , Ina Michaelis , Joachim Grosse , Matthias von Walter , Erich Wintermantel , Nina Laar, May 2010
The overactive bladder syndrome (OAB) is defined as a symptom complex which is characterized with frequent urination, urinary incontinence and a strong, sudden urge to urinate even when the bladder is not full. About 10% of the total population have OAB and it occurs in every age group. Apart from the medical, oral therapy, the so called intravesical instillation is used as well. In order to minimise the numerous side effects of the oral therapy like dry mouth, dizziness or depressions a biodegradable, active agent carrying implant for the intravesical therapy of the OAB was aspired. After a project period of two years a biodegradable, active agent carrying polymer implant could be developed.
DEVELOPMENT OF MOISTURE RESISTANT RECYCLED POLY(ETHYLENE TEREPHTHALATE)
Y. W. Leong , H. Inoya , S.F. Aminuddin , B.C. Ogazi-Onyemaechi , H. Hamada, May 2010
The recycling activities related to poly(ethylene terephthalate) PET has been slow since the material is always thought to possess inferior properties when compared to virgin PET. This study involves the development of novel processing methods to significantly enhance the properties of recycled PET (RPET) especially in terms of moisture resistance.This is particularly important especially when RPET is used for further processing that involves heating such as injection molding since the presence of moisture would severely degrade the material. The drying process of RPET pellets would also require at least a few hours which could significantly affect production cycles. The improvement in moisture resistance can be realized through the control of crystallinity and morphological structure of the RPET pellets during compounding and extrusion processes.
PROCESSING AND MECHANICAL PROPERTIES OF JUTE FABRIC REINFORCED SMC MOLDINGS
Makoto Sarata , Masaharu Nishiura , Yuya Hidekuma , Masanori Okano , Asami Nakai , Hiroyuki Hamada, May 2010
Recent earth environmental concern requires easy recycle material system and the use of biodegradable polymer and natural fiber is noticed in composite materials. In this study jute cloth reinforced SMC was fabricated. And the effect of water included in jute cloth was investigated by bending impact and tensile testing. As a result it was revealed that the dry processing was very important to apply natural fiber for composite materials.
Processing and Mechanical Properties of Jute Fabric Reinforced SMC Moldings
Makoto Sarata , Masaharu Nishiura , Yuya Hidekuma , Masanori Okano , Asami Nakai , Hiroyuki Hamada, May 2010
Recent earth environmental concern requires easy recycle material system, and the use of biodegradable polymer and natural fiber is noticed in composite materials. In this study, jute cloth reinforced SMC was fabricated. And the effect of water included in jute cloth was investigated by bending, impact and tensile testing. As a result, it was revealed that the dry processing was very important to apply natural fiber for composite materials.
PROCESSING AND PERFORMANCE OF HDPE POLYMER BLENDS INCLUDING POST CONSUMER RECYCLED HDPE
T. Beiss, C. Dallner, E. Schmachtenberg, May 2010
With the rapid increase in the market for recycled polyethylene from various sources, there is an urgent need to quantify the performance of these materials. Blends of recycled high density polyethylene (HDPE) were prepared to obtain specific mechanical properties and MFI. The results show that the MFIs had significant effect on the rheological, mechanical and phase morphology characteristics of the various blends.
PROCESSING COSTS AND ENVIRONMENTAL IMPACT OF BIO-PLASTICS
Julius Vogel , Dr. David Grewell , Rob Anex, May 2010
This work studied bio-plastics such as polylactic acid (PLA) and protein based plastics form corn and compared to petroleum based plastics such polyethylene (PE) and polystyrene in terms of their ecological as well as economical performance from a 'Cradle to Grave' perspective. This study included energy input, emissions output of green house gases and costs from their life cycle steps of raw material acquisition to the final product disposal. It was found that products manufactured from bio-based feedstocks were relatively higher in cost, they resulted in less green house gas emissions.
DEVULCANIZATION OF RECYCLED TIRE RUBBER CRUMB WITH SUPERCRITICAL CO2: CURING BEHAVIOR, MECHANICAL PROPERTIES AND DEGREE OF DEVULCANIZATION
M. Meysami , C. Tzoganakis, May 2010
In this work the devulcanization of tire rubber crumb was studied by using an industrial scale twin screw extruder. A reasonably high throughput extrusion process has been developed and the effect of processing conditions has been studied. The effects of different screw configurations, screw speed and feed rate on the stability of process have been investigated. Crosslink density and percent of devulcanization of different samples are measured. Curing behavior, tensile strength, and elongation at break of different compounds consisting of blends of virgin rubber with devulcanized crumb have also been evaluated.
DEVULCANIZATION OF RECYCLED TIRE RUBBER CRUMB WITH SUPERCRITICAL CO2: CURING BEHAVIOR MECHANICAL PROPERTIES AND DEGREE OF DEVULCANIZATION
M. Meysami , C. Tzoganakis, May 2010
In this work the devulcanization of tire rubber crumb was studied by using an industrial scale twin screw extruder. A reasonably high throughput extrusion process has been developed and the effect of processing conditions has been studied. The effects of different screw configurations screw speed and feed rate on the stability of process have been investigated. Crosslink density and percent of devulcanization of different samples are measured. Curing behavior tensile strength and elongation at break of different compounds consisting of blends of virgin rubber with devulcanized crumb have also been evaluated.
DURABILITY OF NATURAL FIBER SHEET MOLDING COMPOUND (ECO-SMC)
Masaharu Nishiura , Makoto Sarata , Yuya Hidekuma , Masanori Okano , Asami Nakai , Hiroyuki Hamada, May 2010
Recent earth environmental concern requires easy recycle material system and the use of biodegradable polymer and natural fiber is noticed in composite materials. To apply the natural fiber for the structural parts the use as reinforcement of Sheet Molding Compound (SMC) is desirable because it is expected that SMC can be used in various fields in terms of high productivity and dimensional stability. Considering that fiber reinforced composite is used for structural part the use of long-span must be possible. Therefore the evaluation of the durability such as degradation is very important subject. In this study SMC (Sheet Molding Compound) that reinforcement was jute cloth were prepared. The jute cloth reinforced SMC was immersed in hot water to promote the degradation. And after immersion an increase ratio of water and bending properties were compared with that of jute cloth reinforced SMC without immersion. As a result the fracture mechanism changed from the combination of crack propagation in matrix area and delamination in the interface around the fiber bundle to only crack propagation in matrix area by water immersion.
Durability of Natural Fiber Sheet Molding Compound (Eco-SMC)
Masaharu Nishiura , Makoto Sarata , Yuya Hidekuma , Masanori Okano , Asami Nakai , Hiroyuki Hamada, May 2010
Recent earth environmental concern requires easy recycle material system, and the use of biodegradable polymer and natural fiber is noticed in composite materials. To apply the natural fiber for the structural parts, the use as reinforcement of Sheet Molding Compound (SMC) is desirable because it is expected that SMC can be used in various fields in terms of high productivity and dimensional stability. Considering that fiber reinforced composite is used for structural part, the use of long-span must be possible. Therefore, the evaluation of the durability such as degradation is very important subject. In this study, SMC (Sheet Molding Compound) that reinforcement was jute cloth were prepared. The jute cloth reinforced SMC was immersed in hot water to promote the degradation. And after immersion, an increase ratio of water and bending properties were compared with that of jute cloth reinforced SMC without immersion. As a result,the fracture mechanism changed from the combination of crack propagation in matrix area and delamination in the interface around the fiber bundle to only crack propagation in matrix area by water immersion.
PROPYLENE BLOCK COPOLYMER AS A COMPATIBILIZER FOR POST CONSUMER HDPE/PP BLENDS
Nora Catalina Restrepo Zapata, Juan Manuel Vélez Restrepo, May 2010
Melt compounded polymer blends such as PP/HDPE blends from post consumer waste have often been reported to exhibit poor mechanical properties. This work reports on the potential improvement in performance of PP/HDPE blends using polypropylene copolymers as compatibilizers. The properties of the PP/HDPE blends in general progressively varied from that of 100% HDPE to 100% PP. Analysis showed some improvements in mechanical performance of the blends with the addition of PP copolymers, but DMTA results suggest no improvement in compatibility.
EFFECT OF CARBON NANO FIBERS ON THE PERMEABILITY OF FIBER REINFORCED POLYMERIC NANOCOMPOSITES
Yunior Hioe , Siva Movva , Dante Guerra , Zhi-Qi Cai , L. James. Lee , Jose M. Castro, May 2010
One of the most attractive environmentally friendly energy generation methods is wind power. In order for this technology to compete favorably with the cost of traditional energy generation methods, the wingspan needs to be greatly increased from current dimensions. For this to occur, we need to take advantage of new material developments such as nano-composites.In order to manufacture such large parts, we need to understand factors affecting flow. In the case of flow through porous media, the material properties are permeability and viscosity. In this work we present preliminary results on the effect of carbon nano fibers on permeability.
EFFECT OF CARBON NANOFIBERS ON THE REACTION KINETICS OF WIND BLADE VINYL ESTER SYSTEM
Siva Movva , Zhi-Qi Cai , Dante Guerra , Yunior Hioe , Jose M Castro , L. James Lee, May 2010
Wind energy is one of the most promising environmentally friendly renewable sources of energy. Epoxy has been the preferred resin used to manufacture wind blades; however with the increased need to lower costs, vinyl ester resin is gaining importance as a alternative material. The curing of vinyl ester resin in the presence of carbon nanofibers (CNFs) was studied by differential scanning calorimetry (DSC). It was found that the carbon nanofibers have a catalytic effect on the curing kinetics of vinyl ester. However there is a percolation threshold and increasing the amount of CNFs beyond this threshold hinders the reaction. A simple autocatalytic model is used to predict the conversion of the vinyl ester resin.
EFFECT OF COMPATIBILIZATION ON CRYSTALLIZATION OF RPET/RPP/CaCO3 BLEND
Supaphorn Thumsorn , Yew Wei Leong , Hiroyuki Hamada, May 2010
Recycled polyethylene terephthalate (RPET),recycled polypropylene (RPP) and CaCO3 were blendedand compatibilized with SEBS copolymer. The effects of compatibilization on morphological, thermal and mechanical properties were investigated. The results indicated that the dispersed phase in compatibilized blends is significantly smaller in size as compared to uncompatibilized blends. The crystallization temperature and crystallinity of the blends were affected by the incorporation of compatibilizers while tensile and impactproperties depended on the content of CaCO3 and compatibilizer.
EFFECT OF COMPATIBILIZATION ON CRYSTALLIZATION OF RPET/RPP/CaCO3 BLEND
Supaphorn Thumsorn , Yew Wei Leong , Hiroyuki Hamada, May 2010
Recycled polyethylene terephthalate (RPET) recycled polypropylene (RPP) and CaCO3 were blended and compatibilized with SEBS copolymer. The effects of compatibilization on morphological thermal and mechanical properties were investigated. The results indicated that the dispersed phase in compatibilized blends is significantly smaller in size as compared to uncompatibilized blends. The crystallization temperature and crystallinity of the blends were affected by the incorporation of compatibilizers while tensile and impact properties depended on the content of CaCO3 and compatibilizer.
EFFECT OF ENVIRONMENTAL EXPOSURE ON MATERIALS BASED ON BLENDS OF PLASTICIZED STARCH AND POLYPROPYLENE
Michael J. Forbes , James T. Goetz , Brian A. Young, May 2010
Due to the recent demand for environmentally friendly polymers and the duty to take advantage of renewable natural resources when possible, biopolymers have become an important alternative to synthetic polymers. Starch when using glycerol as a plasticizer has proven to be a processable ƒ??greenƒ? polymer additive when compounded with maleated polypropylene. In this study, material was characterized based on its ability to perform over five months of exposure to natural conditions. The effects on modulus and elongation with the addition of plasticized starch, in a polypropylene matrix, were evaluated and are presented.
EFFECT OF ENVIRONMENTAL EXPOSURE ON MATERIALS BASED ON BLENDS OF PLASTICIZED STARCH AND POLYPROPYLENE
Michael J. Forbes , James T. Goetz , Brian A. Young, May 2010
Due to the recent demand for environmentally friendly polymers and the duty to take advantage of renewable natural resources when possible biopolymers have become an important alternative to synthetic polymers. Starch when using glycerol as a plasticizer has proven to be a processable “green” polymer additive when compounded with maleated polypropylene. In this study material was characterized based on its ability to perform over five months of exposure to natural conditions. The effects on modulus and elongation with the addition of plasticized starch in a polypropylene matrix were evaluated and are presented.
EFFECT OF HAIRLINE CRACK ON THE TOUGHNESS OF POLYETHYLENE TEREPHTHALATE
Bernard Chukwuemeka Ogazi-Onyemaechi , Masanori Okano , Yew Wei Leong , Hiroyuki Hamada, May 2010
The effect of notches was investigated by introducing single-edge hairline cracks and V-shaped notches of different depths on dumbbell samples to ascertain the fracture behavior at the skin and core parts of virgin and recycled poly(ethylene terephthalate), (V-PET/R-PET), injection-moldings. Investigation shows that the fracture behavior of the materials responded differently to both hairline crack and V-shaped notch. Results revealed that amere 5?¬m deep critical hairline crack caused a drasticchange in the fracture behavior of the materials. In contrast, a standard V-shaped notch would only cause drastic change in toughness at a much higher critical notch depth of 600?¬m. V-shaped notch also provided a gradual transition in fracture behavior from the skin to the core regions, which suggests that the fracture behavior can be dependent on the skin and core sizes of PET injection moldings.
EFFECT OF HAIRLINE CRACK ON THE TOUGHNESS OF POLYETHYLENE TEREPHTHALATE
Bernard Chukwuemeka Ogazi-Onyemaechi , Masanori Okano , Yew Wei Leong , Hiroyuki Hamada, May 2010
The effect of notches was investigated by introducing single-edge hairline cracks and V-shaped notches of different depths on dumbbell samples to ascertain the fracture behavior at the skin and core parts of virgin and recycled poly(ethylene terephthalate) (V-PET/R-PET) injection-moldings. Investigation shows that the fracture behavior of the materials responded differently to both hairline crack and V-shaped notch. Results revealed that a mere 5?m deep critical hairline crack caused a drastic change in the fracture behavior of the materials. In contrast a standard V-shaped notch would only cause drastic change in toughness at a much higher critical notch depth of 600?m. V-shaped notch also provided a gradual transition in fracture behavior from the skin to the core regions which suggests that the fracture behavior can be dependent on the skin and core sizes of PET injection moldings.


This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.




spe2018logov4.png
  Welcome Page

How to Reference Articles from the SPE Library:

Brief version (acceptable):
Author(s), SPE-ANTEC Tech. Papers, vol. no., page no. (year).
Proper version (preferred):
Author(s), “Title,” SPE-ANTEC Meeting in location: month, year, vol. no., page no.