SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library
Keyword/Author:
After Date: (mm/dd/yy)  
 
Sort By:   Date Added  ▲  |  Publication Date  ▲  |  Title  ▲  |  Author  ▲
= Members Only
Sustainability
Various topics related to sustainability in plastics, including bio-related, environmental issues, green, recycling, renewal, re-use and sustainability.
INFLUENCE OF RECYCLED ABS ADDED TO VIRGIN POLYMERS ON THE PHYSICAL PROPERTIES
Venkatesha. N, Claes. Lindberg, Stefan. Johannesson, Derek Buckmaster, May 2010
Reuse of recycled polymers is steadily increasing. In this study, blends of varying proportions of ABS recycled resins (0~50%), obtained from the gate and runner materials of products, was added to virgin resin to investigate the effect of various compositions of virgin ABS and recycled polymers on the physical properties of the final blend. The results show that there is no obvious effect of recycled ABS percentage (by weight) on the tensile strength, elongation at yield, flexural strength, and flexural modulus. However, hardness, glass transition temperature, MFI, and heat conductivity of recycled ABS increase with as the percentage (by weight) of recycled material increases. The impact strength was also found to vary with the recycled ABS loading.
INNOVATIVE PVD TECHNOLOGY SUSTAINABLE METALLIZATION PROCESSING WITH ADVANCED FUNCTIONALITIES FOR PLASTIC SURFACES
Dr. Ruediger Schaefer , Carlos Ribeiro, May 2010
The continuing trend toward metallic surfaces on plastics has motivated hartec to further develop PVD metallization by magnetron sputtering.Specifically, the combination of PVD + Topcoat (paint) appears to be a viable alternative to electroplated surfaces and real metals. Ecologically, the PVD process is sustainable, 100% non-toxic and emission free.PVD metallization offers a wide range of applications with advanced functionalities: Daynight design realized by laser-etching; optically and electromagnetically translucent coatings for 'hidden' displays and sensor technology; flexible substrates like TPU or TPE, for example used for safety components like airbag emblems in the automotive industry etc.
INVESTIGATION OF POLYCAPROLACTONE/STARCH BASED MATERIAL MELT PROCESSED BLENDS
Koffi L. Dagnon , Nandika A. D’Souza, May 2010
Research on biodegradable materials has been stimulated due to environmental and economic concerns. The blends of polycaprolactone and a starch based material were prepared by compounding with a twin-screw Brabender. DSC TGA and DMTA were used to characterize the blends and indicated some degree of interaction between the neat polymers. With respect to the neat PCL DSC results of the blends revealed peak shift and depression in either the melting or melt crystallization point and the glass transition temperatures obtained from the maxima loss tangent peaks of DMTA were also shifted. TGA studies showed decreased thermal stability of the PCL rich phase blends with increasing wt.% starch based material. Tensile test concluded improved modulus in the blends in comparison with the neat PCL. (Ref.9)
INVESTIGATION OF PROCESSABILITY OF ZEIN BASED PLASTICS AND COMPOSITES
Gowrishankar Srinivasan , David Grewell, May 2010
The current market viability of petroleum based plastics is strong, but may drop in the future due to international oil crisis accompanied by issues associated with disposal. This has already led to a thrust to develop bio-renewable and biodegradable plastics. One of the emerging contenders are plant based protein polymers such as soy protein and zein (corn protein).The paper reports on the extrusion, molding and mechanical performance of zein based plastics and natural fiber composites. Different formulations of zein plastics with plasticizers and crosslinking agents were extruded and both injection and compression molded. Samples exhibited strengths of up to 12.7 MPa and a crosshead displacement extension value of 61% for different formulations respectively. In addition zein formulations were compounded with coconut and corn-cob fibers in various filler levels via extrusion. The injection molded composite samples had strengths upto 20 MPa.
INVESTIGATION OF PROCESSABILITY OF ZEIN BASED PLASTICS AND COMPOSITES
Gowrishankar Srinivasan , David Grewell, May 2010
The current market viability of petroleum based plastics is strong but may drop in the future due to international oil crisis accompanied by issues associated with disposal. This has already led to a thrust to develop bio-renewable and biodegradable plastics. One of the emerging contenders are plant based protein polymers such as soy protein and zein (corn protein).The paper reports on the extrusion molding and mechanical performance of zein based plastics and natural fiber composites. Different formulations of zein plastics with plasticizers and crosslinking agents were extruded and both injection and compression molded. Samples exhibited strengths of up to 12.7 MPa and a crosshead displacement extension value of 61% for different formulations respectively. In addition zein formulations were compounded with coconut and corn-cob fibers in various filler levels via extrusion. The injection molded composite samples had strengths upto 20 MPa.
IONOMERS WITH ENVIRONMENTALLY RESPONSIVE SELF-REGULATED BREATHABILITY AND THEIR APPLICATIONS FOR HOUSE AND ROOF LINERS
Yushan Hu, Debbie Chiu, Jose M. Rego, Hongyu Chen, Benjamin Poon, May 2010
Environmentally responsive self-regulated gas transmission is achieved by smart vapor barrier (SVB) ionomers. Their moisture transmission changes reversibly from barrier to transmitter as the environmental relative humidity changes. This provides a means to regulate the moisture content within enclosed structures, such as buildings, and enables effective dissipation of moisture to mitigate problems from moisture condensation. It also provides an effective draft barrier to minimize heat transfer for energy conservation. WUFI (W??rme Und Feuchte Instation??r) modeling, methodology pioneered by the Frauhofer Institute, can be used to calculate the coupled heat and moisture transfer in building components containing smart vapor barrier membrane.
MECHANICAL PERFORMANCE AND FRACTURE CHARACTERISTICS OF INJECTION MOLDED R-PET/PE-E-GMA BLENDS
Norman E. Fowler, May 2010
The effect of the amount of reactive additive and screw speed during extrusion on the morphological characteristics and mechanical performance of recycled poly(ethylene terephthalate) (RPET) has been investigated. With the increase of E-GMA additive content, a gradual increment in Izod impact strength of the RPET/E-GMA blends was initially recorded. Subsequent increments in E-GMA content to above 13.5 wt% led to a drastic enhancement in the toughness of the blends. Meanwhile, the density of the blends decreased with increasing amount of additive E-GMA. The toughness and density of the blends were found to be dependent on screw speed during the extrusion. In addition, ductile and microporous structures could be observed from the Izod impact fracture surfaces.
MECHANICAL PROPERTIES OF A RECYCLED POST-CONSUMER PRODUCT WITH COMPLEX CONSTRUCTION
Andrew J. Donovan , Mary E. Moriarty, May 2010
Many consumer products have a complex construction with multiple types of materials. This makes it difficult to recycle the products if the materials are not easily separated. A mixed recycling study was conducted for a particular multi-material product to determine the degree of material segregation required to obtain a recycled feedstock with useful properties. Toothbrushes were selected as the product for this study. These were collected from a commercial take-back program and were separated by material. Different formulations were compounded with virgin material at varying percentages and molded into ASTM test specimens for mechanical property testing.
MECHANICAL PROPERTIES OF HEAT SEALED RECYCLED POLY(ETHYLENE TEREPHTHALATE) SHRINK FILM
Rei-ichi Konishi, Kazushi Yamada, Yasuo Hashimoto, Yew Wei Leong, Tetsuya Tsujii, Hiroyuki Hamada, May 2010
In recent years, the development of recycling methods for waste PET bottles has generated much interest due to environmental and waste management concerns. Therefore, in this study, recycled PET (RPET) was considered instead of PS or PVC to prepare shrink films for labeling purposes. However, the labels would still have to be removed from the bottles prior to recycling due to color incompatibility. For this reason, the tear properties of the RPET labels, especially at the heat sealed regions, are elucidated and correlated to film crystallinity and molecular orientation.
MECHANICAL PROPERTIES OF HEAT SEALED RECYCLED POLY(ETHYLENE TEREPHTHALATE) SHRINK FILM
Rei-ichi Konishi , Kazushi Yamada , Yasuo Hashimoto , Yew Wei Leong, May 2010
In recent years, the development of recycling methods for waste PET bottles has generated much interest due to environmental and waste management concerns. Therefore, in this study, recycled PET (RPET) was considered instead of PS or PVC to prepare shrink films for labeling purposes. However, the labels would still have to be removed from the bottles prior to recycling due to color incompatibility. For this reason, the tear properties of the RPET labels, especially at the heat sealed regions, are elucidated and correlated to film crystallinity and molecular orientation.
MECHANICAL PROPERTIES OF INJECTED MOLDED PCL/TPS NANOCOMPOSITE BLENDS
Daniel E. Ramírez-Arreola , Guillermo Sandoval-Hernández , Martín Arellano , Cesar Gomez , Rubén González-Núñez , Denis Rodrigue, May 2010
Injected molded nanocomposite blends based on PCL/TPS and Cloisite 15A (C15A) were prepared and its mechanical properties were studied. The injected samples were exposed to the environment in order to analyze the influence of exposure time and moisture uptake over mechanical properties. The results showed that samples tested right after molding exhibit low mechanical resistance to impact and high Young modulus, while increasing the environmental exposure time reduced the Young modulus and substantially increased the medium failure energy. On the other hand, using C15A increases the medium failure energy, and an important interaction between TPS, moisture and clay was observed.
MECHANICAL PROPERTIES OF INJECTION-MOLDED JUTE/GLASS REINFORCED HYBRID COMPOSITES
Tomoko Ohta , Yoshihiro Takai , Yew Wei Leong , Asami Nakai , Hiroyuki Hamada , Tsutomu Nagaoka, May 2010
Bio-composites are generally made from natural fibers as reinforcement and a biodegradable polymer matrix such as poly(lactic acid) or poly(caprolactone).However the mechanical properties of these composites are relatively low. For practical applications glass fibers were added to create hybrid composites. The concept of ƒ??degree of greenƒ? is introduced to identify the true content of biodegradable material in the composite. Three different fiber hybridization methods are proposed i.e.dry blending mixing of pellets and sandwich injection molding. The mechanical properties of these hybrid composites are evaluated and the relation between the properties and degree of green is discussed.
MECHANICAL PROPERTIES OF RECYCLED PET/PP INJECTION MOLDINGS
H. Inoya , W. Klinklai , Y. W. Leong , H. Hamada, May 2010
Compatibilization effects on the phase morphology and mechanical properties of post-consumer recycled poly(ethylene terephathalate) (RPET)/ polypropylene (PP) blends were investigated. The blending of RPET and PP (RPET/PP:95/5) was carried out by a singlescrew extrusion process in the presence of various amounts of compatibilizer ranging from 0-35 phr based on the PP content. The compounded materials were injection molded into dumbbell test pieces which were subsequently used for mechanical and morphological characterizations. The addition of compatibilizer of up to 15 phr resulted in a size reduction of the dispersed phase while an apparent increase in density of the blends suggests an improvement in interfacial interaction following the depletion of hollow ligaments between the PP and RPET phases. The changes in morphological structure significantly affect the tensile and impact resistance of the moldings. An elongation at break (EB) of more than 350% could be achieved with the incorporation of just 15 phr of compatibilizer (as compared to <90% EB for un-compatibilized specimens) while significantly better impact performance was observed in all compatibilized specimens.
MELT EXTRUDED WATER-SOLUBLE STARCH-BASED FILMS
Nathalie Chapleau , Hongbo Li , Michel A. Huneault, May 2010
The interest for biodegradable and water-soluble packaging films has gained attention as they have a potential in several applications such as pouches for powders and liquids, liners and bags, and medical delivery devices. In this work, starch-based materials are used to produce melt extruded films. Starch is a biopolymer that can be gelatinized to form thermoplastic starch (TPS). The gelatinization is carried out in an extruder by applying shear and heat in presence of plasticizers. The influence of the TPS composition on the final properties of the films will be investigated. The crystalline structure, the mechanical properties and water solubility will be evaluated.
MICROMOLDING FOR QUARTZ GLASS/POLYMER COMPOSITES
Darin VanDerwalker, Stephen Johnston, Dan Hazen, David Kazmer, May 2010
Micromolding with microscale surface features and thin-wall plates of the quartz glass/polymers composites were performed to fabricate a new micro-fluidic plate with glass. Effects of process parameters on processability and surface replication of the molded parts were evaluated. The replication ratio and internal morphology of molded green and sintered microparts were analyzed using SEM and a confocal laser scanning microscope. During sintering processes, the green molded composites shrank with removal of binder polymer. The internal morphology affected shrinkage of green molded composites. The surface replication ratio of molded and sintered parts showed high values. Sintered molded parts were produced with a high aspect ratio of 3.4 and 10 ?¬m micro-line width.
MODELING INTERFACIAL STRENGTH OF POLYBUTYLENE SUCCINATE(PBS)/POLYPROPYLENE(PP) MULTILAYER INJECTION-MOLDED PART USING FINITE ELEMENT METHODS
Siu N. Leung, Anson Wong, Chul B. Park, May 2010
Polypropylene (PP)-based sandwich injection moldings containing biodegradable polymers in the core were carried out. Interfacial adhesion between the skin and the core is essential for obtaining sufficient mechanical strength for commercial applications. In order to investigate the interfacial strength between the skin and the core, the ASTM/ISO scratch test was used and critical delamination load for delamination was determined. For comparison, an 180o peel test was also conducted, whereby the skin was peeled off from the core, to measure its adhesive force in a different way. Numerical simulation using FEM was applied to these experiments to study interfacial strength. Destruction of the interfacial layer was defined by either a critical stress or critical strain criterion. The critical strain criterion appears to better describe the phenomenon in these two experiments. FEM simulation could qualitatively correlate with these behaviors, suggesting that delamination could be described as a strain dominant phenomenon.
MODELING OF COUPLING BETWEEN SPECIFIC ENERGY AND VISCOSITY DURING TWIN SCREW EXTRUSION OF STARCHY PRODUCTS
Françoise Berzin , Ahmed Tara , Bruno Vergnes , Chantal David, May 2010
Starchy products are commonly transformed by twin screw extrusion, either for the manufacturing of food products (extrusion cooking of snacks or breakfast cereals, for example) or for the production of bio-based materials (bioplastics). During the extrusion process, starch is submitted to high shear rates and stresses which lead to a modification of its basic structure. As many properties of the extruded starch are directly connected to the molecular weight and its distribution, it is very important to be able to predict the changes experienced during the extrusion process. In order to model the transformation of starch during twin screw extrusion process, it is thus necessary to take into account the strong coupling between viscosity and thermomechanical treatment. It is the purpose of thepresent work. We have used the software Ludovic was developed ten years ago to calculate the flow of a polymer along a twin screw extruder. We have assumed that the degradation reaction (viscosity decrease) was linked to the specific energy received during the flow. We have compared extrusion cases with and without viscosity/energy coupling and we show that it is important to take it into account in order to correctly predict the parameters of the extrusion process (torque, energy, product temperature') and the starch transformation.??, which
MORPHOLOGY DEVELOPMENT IN THE PELLET DURING COMPOUNDING OF RECYCLED POLY(ETHYLENE TEREPHTHALATE) (RPET)/POLYPROPYLENE (PP) BLENDS
H. Inoya , Y. W. Leong , S. Thumsorn , S. Thitithanasarn , H. Hamada, May 2010
The morphology of RPET and PP pellets has been shown to have a profound effect on the properties of injection moldings. The size of PP dispersed phase is critical as it dictates the ductility of the blend. It has been shown that the size of a dispersed phase could grow by either coalescence or relaxation during and immediately after extrusion where temperatures are high. This study focuses on the chronological development of PP dispersed phase throughout the extrusion line during RPET/PP blending prior to pelletizing. The effect of compatibilizer content will be correlated to the growth rate of PP phase and also on the mechanical properties of subsequent injection moldings.
NEXT GENERATION HDPE FOR BLOW MOLDING APPLICATIONS
Mridula (Babli) Kapur, May 2010
High density polyethylene (HDPE) is widely used to fabricate blow molded articles for rigid packaging as well as for other market segments such as industrial and chemical containers automotive home and recreation. The drive to reduce packaging cost as well as minimize impact on the environment has increased the emphasis on light weight packaging. A next generation (NG) of HDPE resins was developed through selective molecular architecture modification to offer a unique combination of easy resin processing on existing extrusion blow molding equipment and a superior balance of physical properties which allow blow molded articles to be light weighted. A higher percentage of post consumer recycle can also be incorporated while meeting the blow molded article performance requirements.
NOVEL BIO-BASED THERMOSET RESINS FROM EPOXIDIZED VEGETABLE OILS FOR STRUCTURAL APPLICATIONS
Mohammad H. Al-Wohoush, Musa R. Kamal, May 2010
Bio-derived thermosets were cured from inexpensive, low-toxicity precursors. Epoxidized linseed oil (ELO) and epoxidized soybean oil (ESO) were crosslinked with a range of crosslinking agents: branched polyethyleneimine (PEI) and triethylenetetramine (TETA). Curing conditions were optimized through solvent uptake and soluble fraction analysis. Properties may be varied from elastomeric to rigid. Rigid bioepoxies, while not as stiff as conventional materials, are expected to display better toughness and may be promising for coatings and as binders in engineered wood products.


This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.




spe2018logov4.png

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net