SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library
Keyword/Author:
After Date: (mm/dd/yy)  
 
Sort By:   Date Added  ▲  |  Publication Date  ▲  |  Title  ▲  |  Author  ▲
= Members Only
Sustainability
Various topics related to sustainability in plastics, including bio-related, environmental issues, green, recycling, renewal, re-use and sustainability.
Visco-elastic properties of modified poly(lactic acid)/ spruce-wood-flour composites
Adriana Gregorova , Rupert Wimmer, November 2010
Composite mechanical behavior is critically influenced by interfacial compatibility between the filler and polymer matrix.
Recycled polyvinyl chloride as a sustainable solution
Hong Chang , Nidal Abu-Zahra, December 2010
An improved extrusion technique for polyvinyl chloride regrind could be useful to manufacturers, builders, and architects.
Polymer blends with improved mechanical properties
Trevor Woods, Ramesh Babu, February 2011
Hydrolytic degradation and elongation properties of polylactic acid can be enhanced by blending with polyhydroxybutyrate.
Nanocomposites of new biodegradable polyesters and polyesteramides
Alfonso Rodriguez-Galan, Luis Javier del Valle, Jordi Puiggali , Maria Teresa Casas, Laura Morales-Gamez, Lourdes Franco, March 2011
Polymers are easily prepared by bulk polycondensation based on metal-halide salt formation, while crystallization is strongly influenced by incorporation and distribution of silicate nanoparticles.
Environmentally friendly polymer composites prepared with cellulose nanocrystals
Vera Maria Wik, Mirta Ines Aranguren, Mirna Alejandra Mosiewicki, March 2011
Novel polyurethanes obtained from vegetable oil exhibit appreciably improved mechanical performance with inclusion of just 0.5% by weight of nanosized cellulose crystals.
Biodegradable polymers based on starch and poly(lactic acid)
Tamas Tabi, Jozsef Gabor Kovacs, March 2011
Pre-process drying is an inexpensive and environmentally friendly way to enhance adhesion between fillers and polymers.
Processing and characterization of recycled poly(ethylene terephthalate) blends
Yottha Srithep, Lih-Sheng Turng, March 2011
Chain extenders blended with recycled poly(ethylene terephthalate) improve mechanical properties and moldability.
Freeze-drying improves crystallization of biodegradable polymers
Nobuaki Tabata, Takashi Sasaki , Daisuke Morino, March 2011
Poly(L-lactide) prepared by freeze-drying exhibits higher crystallizability than the bulk polymer.
Tissue engineering scaffolds formed by pseudo-negative voltage electrospinning
Min Wang , Ho-Wang Tong, April 2011
An emerging electrospinning technique enables the fabrication of multilayered fibrous membranes with high fiber density and reliable fiber alignment.
Nanocomposites improve performance of biodegradable polymers
Carla Marega, Ramesh Neppalli, Roberta Saini, Valerio Causin , Antonio Marigo, April 2011
Nanocomposites based on polycaprolactone exhibit enhanced tensile properties and controlled biodegradation rates.
A GREEN PROCESS FOR THE SYNTHESIS OF MESOPOROUS SILICA MATERIALS
Honghu Dai, Daoxing Dai, Jintao Yang, Yunguo Zhou, Zhengdong Fei, Feng Chen, Mingqiang Zhong, May 2011
In this paper, mesoporous silica and functionalized silicas were prepared by a green template, polyamidoamine (PAMAM) dendrimers. Three silane coupling agents, 3-triethoxysilylpropyl- amine (APTES), -methylacryloyl oxypropyl trimethoxysilane (MAPTMS) and N-[3-(trimethoxysilyl)propyl]ethylenediamine (AEAPTMS) were used for modification on pore surface. The characters of synthesized silicas were investigated in detail. The results showed that controllable pore diameters, narrow pore size distributions, high surface area and pore volume were achieved. The PAMAM template can be feasibly removed by using water extraction.
A NOVEL POLY (LACTIC ACID) BASED WATERBORNE POLYURETHANE
Naoko Shinozawa, Hirotoshi Kizumoto, Naoko Oda, May 2011
In the past few decades, Bio-plastics of plant origin and biodegradable plastics, and emulsions containing no organic solvent have drawn growing attentions as general environmentally friendly materials. Poly (lactic acid) based polyurethanes self-emulsified in 100% water were synthesized. The particle sizes of some of the emulsions were fine (less than 100nm) and they were stable for 6 months under 5oC storage condition. The low Tg sample showed good biodegradability. In this report, result of the polymerization and the emulsification, and the characteristic of the obtained emulsions were described.
A STATISTICAL STUDY OF THE COMPATIBILITY AND CURING OF DEVULCANIZED RUBBER AND POLYPROPYLENE
Prashant Mutyala, May 2011
The usage of waste tire rubber crumb as a dispersed phase in a thermoplastic matrix has been a topic of study for a long time. Inspite of using compatibilizers the properties achieved using polypropylene (PP) and waste ground rubber tire (GRT) crumb composites remained inferior. Devulcanized rubber (DR) being more relatively similar to virgin rubber is supposed to perform better than GRT and hence should be a better material for commercializing. This paper presents a statistical analysis of compatibility between DR and PP and also studies the effectiveness of a sulphur cure system in compatibilization.
BIMODAL POLYSTYRENE/PARTICLE FOAM BY EXTRUSION FOAMING
Cailiang Zhang, Bin Zhu, L. James Lee, May 2011
Extrusion foaming using supercritical carbon dioxide (CO2) as the blowing agent is an economically and environmentally benign process. However, it is difficult to control the foam density and maintain the thermal insulation performance. In this study, the extrusion foaming process of bimodal polystyrene foams was investigated by using CO2 as the blowing agent and water as the co-blowing agent. Compared to the extruded foam without water as co-blowing agent, the bimodal foams exhibit better thermal insulation property and compressive performance.
BIODEGRADATION OF POLY (HYDROXY BUTANOIC ACID) COPOLYMERS
Xiudong Sun, May 2011
Biodegradable plastics have attracted much attention in the last decade, not only because they can divert waste from landfill, but also because the biodegradable functionality meets the requirement of many applications. Poly (hydroxy butanoic acid) or PHB copolymers is one such class of plastics. This paper will review the biodegradability of these polymers in various environments including soil, fresh water, seawater, compost and anaerobic digesters. Testing methods and variables influencing biodegradation will also be discussed.
BIODEGRADATION OF POLY (HYDROXY BUTANOIC ACID) COPOLYMERS
Xiudong Sun, May 2011
Biodegradable plastics have attracted much attention in the last decade, not only because they can divert waste from landfill, but also because the biodegradable functionality meets the requirement of many applications. Poly (hydroxy butanoic acid) or PHB copolymers is one such class of plastics. This paper will review the biodegradability of these polymers in various environments including soil, fresh water, seawater, compost and anaerobic digesters. Testing methods and variables influencing biodegradation will also be discussed.
ACCELERATED ENVIRONMENTAL AGEING OF MATERIALS USED FOR COLLAPSIBLE FUEL STORAGE TANKS
James Sloan, David Flanagan, Paul Touchet, Henry Feuer, Daniel Desechepper, Charles Pergantis, May 2011
The purpose of this work was to perform a comparative analysis of various candidate nitrile coated fabric materials supplied by potential vendors to be used as fuel storage tanks and compare the results to the currently fielded polyurethane storage tanks. Our strategy is to utilize advanced environmental ageing methods to simulate extended weathering conditions. Our results demonstrate that the nitrile coated fabrics performed well in our evaluation. Their breaking strengths are about equal to the currently fielded urethanes and they performed comparably when subjected to environmental ageing conditions.
AUTOCLAVABILITY OF HIGH HEAT POLYCARBONATE RESINS FOR HEALTHCARE APPLICATIONS
Srinivas Siripurapu, Xiaoyu Sun, Scott Davis, John McCann, May 2011
Medical applications in healthcare market most often require multiple use or reuse of the instrument. Autoclave sterilization is one of the most common methods to effectively clean the instrument before reuse. To understand the capability of newly developed high heat Lexan* XHT resins in autoclave applications, mechanical property retention including tensile, flexural and practical impact properties were evaluated after multiple autoclave cycles at both 120?øC and 134?øC. These new class of high heat Polycarbonates offer better performance in comparison to conventional polycarbonates at high sterilization temperatures.
BARRIER PROPERTIES AND CHARACTERISTICS OF POLYGLYCOLIC ACID FOR UN-ORIENTED AND ORIENTED FILMS
Daisuke Ito, Kazuhisa Takatsuji, May 2011
Measurement of oxygen permeability of biodegradable polyglycolic acid (PGA) un-oriented amorphous and crystallized films, and oriented films showed superior values versus general barrier materials. The effect of orientation and crystallization was investigated, showing that oxygen permeability was dependent upon the polymer's free volume and its degree of crystallinity. By stretching an un-oriented amorphous film, PGA chains became highly oriented, resulting in increased temperatures of glass transition and tan?? peak. PGAƒ??s carbon dioxide barrier was tested using PET/PGA multilayer bottles, with 1 and 3wt% PGA bottles showing 1.5 and 2.5 times better gas barrier, respectively, versus a PET monolayer bottle.
BIO-COMPOSITES OF SESBANIA HERBACEA PLANT FIBERS/POLYVINYL ALCOHOL (PVA): EFFECT OF CHEMICAL RETTING
Shailesh Vidhate, Kevin Stevens, Brian Ayer, Allen Michael, Nandika D'Souza, May 2011
The natural cellulose fibers used in this study with properties suitable for polymer composite application were obtained from sesbania herbacea plant stem by chemical retting method. The objective of this work is to study the effect of retting method on morphology and mechanical properties of the sesbania fibers and its composites with polyvinyl alcohol (PVA). The retting was done by using different concentrations of sodium hydroxide (NaOH) solutions. Scanning electron microscopy was used to study the morphology and thermo mechanical testing was done to study the effect of NaOH treatment on the properties of fibers and its composites with PVA.


This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.




spe2018logov4.png

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net