The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.
The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?
Various topics related to sustainability in plastics, including bio-related, environmental issues, green, recycling, renewal, re-use and sustainability.
This study was carried out to clarify a relationship between moisture absorption fraction and higher-order structure of dry-less recycled PET pellets. Karl Fischer moisture titration, differential scanning calorimetry (DSC), microscopic Raman spectroscopy and scanning electronic microscope (SEM) were used to characterize the pellets to determine distinct structures that differentiates the dry-less pellets with normal pellets.
Smith Thitithanasarn, Kazushi Yamada, Hiroyuki Nishimura, Hiroyuki Hamada, May 2012
This paper presents the possibility of using natural fiber as reinforcement for engineering thermoplastics composite. Jute mats from waste coffee bag were treated by thermoset resin such as flexible epoxy resin (FE) to improve their thermal resistance prior to compression mold with polycarbonate (PC). The effects of epoxy contents on thermal properties and mechanical properties of the composites were investigated.
Brian E. Ralston, Suresh Donthu, Paul Ledwith, Adam Kramschuster, Jason McNulty, May 2012
Three general purpose polycarbonate (PC) resins and one PC-siloxane copolymer were injection molded, then exposed to isopropyl alcohol (IPA), hand lotion, and SPF 30 sunscreen while under strain. The hand lotion exhibited the most aggressive environmental stress cracking (ESC) behavior. Effects of molecular weight, polymer composition and annealing are addressed. Scanning electron microscopy of an ESC fracture surface is also presented.
Ryan Vadori, Manjusri Misra, Amar Mohant
y, May 2012
In this paper, the method for design of a bio-based green material for use in electronics applications is discussed. The aim is substitution of currently used petroleum-based acrylonitrile butadiene styrene (ABS) with a bio-based polymer blend of poly(lactic acid) (PLA) and ABS. In this method, polymers will be melt blended and extruded to test their thermal and mechanical properties. The goal is to achieve performance of the blend equal or better to currently used ABS, as well as be a cost competitive alternative.
M. Feldmann, AA Mamun, A.K. Bledzki, H.
-
P. Heim, May 2012
Bio-based polyamides, such as PA 6.10/ Nylon 6.10 and PA 10.10, were compounded with different cellulosic fibers for injection molding applications. PA 6.10 is partly bio-based (>60%) and possessing properties very similar to those of common PA 6. The melting point of PA 6.10 is 220°C and therefore compounding with thermally sensitive cellulose fibres is a challenge. A compounding process for engineering polymers, like polyamide with cellulose fibres, was developed and optimized. It is gentle to the fibers, even at temperatures above 200°C. Furthermore, the molding process parameters were also optimized. Different mechanical properties were studied. The high impact behavior and lightweight potentiality were analyzed for bio-composites with cellulosic fibres.
W.D. Ding, A. Wong, T. Kuboki, C.B. Park, M. Sain, May 2012
This paper examines the effect of fiber content on the foaming behavior of cellulose nanofiber reinforced polylactic acid biocomposites. The in situ observation of batch foaming processes was conducted by using a high-speed camera. It was found that nanofiber content has a significant effect on the cell nucleation and growth in the composite foams. As the fiber content increased, the cell nucleating power increased and cell growth rate decreased.
The cleanliness of production facilities is an important quality factor. Higher purity minimizes environmental influences and in this way a better process control can be obtained. Therefore, the use of clean room technology is establishing in industries like automotive more and more. To maintain the controlled contamination throughout the process, injection molds, which are intended for production in clean room environments must be adequate to special needs. Special coatings for lubricant-free manufacturing support these concepts.
In this study, the aliphatic or aromatic isocyanates and poly-alcohols was used to synthesize polyurethane with shape memory function, which the polyol was derived from the biomass polylactic acid (PLA). The recycled PLA was degraded into the low molecular weight PLA (Mw 1,000) and the chain extension agent (1,4-butanediol, BDO) reaction was added to form biomass polyol. The analysis of Fourier transform infrared spectroscopy (FTIR) and Gel permeation chromatography (GPC) were proved the synthesis of polyol. The recovery ratio of shape memory and mechanical properties of polyurethane were improved significantly due to the urea structure, the biomass polyurethane with shape memory could be increased up to 95% of recovery ratio. Different isocyanate (hexamethylene diisocyanate, HDI, or 4,4- diphenylmethene diisocyanate, MDI) were compared and found that the functional group of aromatic was better than that of aliphatic in the synthesis of polyurethane with shape memory behavior.
Ata Taghizadeh, Basil D. Favis
Ata Taghizadeh, Basil D. Favis, May 2012
Polycaprolactone (PCL) has been blended with thermoplastic starch (TPS) and carbon nanotubes in different compositions. The localisation of solid particles is an influential factor in filled polymer blends. Hence, SEM and TEM images have been used to investigate the morphology and localisation of nanofilled-polymer blends. .The blending of a semicrystalline polymer with another polymer or nanofillers will also change the thermal properties of the polymers in different ways. This change has been studied by non-isothermal crystallization curve analyses. These results were interconnected in such a way that it was possible to confirm the localisation from thermal properties.
The UV-cure segment’s growth can be attributed to the coatings’ many competitive advantages, including low energy costs, no pot life issues, reduced environmental impact and a fast cure speed. In fact, one-component (1K) UV-cure coating technology is one of the fastest chemistries currently available. This paper will discuss trends within the two main UV coating platforms – 100 percent solids UV formulation and waterborne UV systems. Both are sustainable chemistries, having ultra-low-volatile organic compound (VOC) levels.
The present work attempted to implement reactive compatibilisation of blends of recycled engineering plastics, more particularly the case of recycled PA66 contaminated by recycled PA6. Low molecular weight, high Tg Styrene-Maleic Anhydride copolymers were tested as chain extenders / compatibilizers. It appeared that the addition of 2% by weight of SMA to an incompatible system of recycled PA6 and PA66 improved both ductility and impact performance by factors of at least 10 and 1.5 respectively. Moreover, high Tg SMA improved performances at elevated temperature, partly due to its ability to effectively crosslink but also because of its inherent heat resistance.
Saied H. Kochesfahani, Caroline Abler, Jerome Crepin-Leblond, Frederic Jouffret, May 2012
The use of talc in PLA compounds for durable applications has been studied, and it is shown that talc could significantly increase stiffness, reduce thermal expansion (CLTE), and enhance thermal stability and HDT of crystallized PLA compounds. The high aspect ratio Luzenac HAR talc could be used to maximize these functions or to achieve desired mechanical properties at lower talc loadings, which may be desirable for compostability or other requirements.
Micronized Rubber Powder (MRP) is classified as dry, powdered elastomer in which a significant proportion of particles are less than 100 microns. It is used as a compound extender to offset the spiraling prices of natural and synthetic virgin rubber materials. MRP is typically made from cured elastomer feedstock via a cryogenic process at a temperature below the Tg of the polymer. A better understanding of MRP surface properties is needed to facilitate efforts to utilize the material as a high value, sustainable material for use in various industrial and consumer rubber products. An update on MRP characterization is presented, including surface morphology by SEM, surface chemistry by XPS, surface area by Kr BET, and particle size distribution by laser diffraction. An example is given that demonstrates how the surface chemistry can be used to explain the effect of MRP on cure and physical properties in rubber compounds.
Blends of soy flour and linear low density polyethylene were melt-compounded at soy loading levels of 0-40% with and without a compatibilizer. Films were formed from the blends through compression molding and were characterized for thermal, mechanical and barrier properties. Measured shifts in the glass transition temperature of the soy component with and without compatibilizer are reported. Oxygen and water vapor permeation rates of the films are also presented and compared to the neat polyethylene film.
The advent of new base raw materials composed of recycled post consumer/post industrial plastics combined with organic bio fibers that up to now had no value added/sustainable use, has created a global market for a new classification of materials, Bio Fiber Composites. Fundamentally, these composites reduce the hydrocarbon content, (oil) replaced with natural fillers in the form of organic “renewable.” This family of materials is best suited to replace pure polymers, and drives the green, sustainable shift of achieving a balance of physical and mechanical properties to produce the goods and components needed across the complete product landscape. Any product that is injection molded, extruded, thermoformed, or rotationally molded today, can be replaced with a natural organic filled BioComposites Materials. MCG BioComposites, LLC has been formed to supply this place in the industry. This paper will demonstrate the uses and commercial applications for various biomasses, i.e., corn cob fiber, flax fiber and wheat starch.
PHA biodegradable plastics can be made into biodegradable bottles with reasonable impact and tensile strength. PHBV and P(3HB-4HB) grades of PHA were compounded with processing additives and blow molded into bottles with an extrusion blow molding process. Mirel based P(3HB-4HB) had superior processing properties and demonstrated a wide processing window to two other PHA materials. Mirel based P(3HB-4HB) had superior tensile and impact properties and superior permeation resistance than two other PHA materials from China.
Herman Suwardie, Bhavita Joshi, Eleanor Ojinnaka, William B. Hammond, George C. Collins, May 2012
Cross-linking of polymeric biomaterials has increased in interest over the last 5-10 years. One category of biomaterials is hydrogel, a chemically cross-linked network that swells when immersed in water. Dextran, a polysaccharide, can be crosslinked to form hydrogels that have found application as tissue scaffolds and delivery devices. In this study, dextran is cross-linked with diisorbide bisepoxide, a water soluble chemical cross-linker. The gelation temperature and gel time will be monitored using oscillatory rheometer.
Paul Lem, Philip Bates, B. Baylin, J. Vanderveen, May 2012
This study examined the crystallization behaviour of polyamide 6 from post-industrial carpet waste (PIW6-GF) and virgin polyamide 6 (PA6-GF) - both reinforced with 30 wt% glass fibers. Neutron activation analysis was used to detect the presence of contaminants – principally TiO2, a common pigment in carpet fibers. Once the Ti content in the glass fibers was accounted for, the TiO2 contents in the resin fraction of PIW6-GF and PA6-GF were estimated to be 0.14% and 0% respectively. Differential scanning calorimetery (DSC) was performed to assess the overall level of crystallinity and rate of crystallization. Experiments showed that, regardless of the cooling rate, PIW6-GF started to crystallize sooner and at higher crystallization temperatures than PA6-GF. This was attributed to the presence of TiO2 acting as a nucleating agent. Towards the end of the crystallization process, the rate of crystallization for PIW6-GF was observed to slow down relative to PA6-GF. At the highest cooling rates attainable in the DSC (200 °C/min), PA6-GF completed crystallization before that of the PIW6-GF compound. This reduction in crystallization rate is again attributed to the nano-scale TiO2 that could be interfering with the later stages of the crystallization process. The total crystallinity of moulded parts was observed to be greater for PA6-GF than PIW6- GF. Dynamic mechanical thermal analysis (DMTA) was performed on both materials one minute after ejection from a 30°C injection mould. This allowed the capture of rigidity data during the cooling of the specimen at a constant temperature of 25°C. PIW6-GF parts exhibited significantly lower complex moduli during the 30 minutes after moulding. Interestingly, modulus values at 25°C of both materials measured one week after the moulding were equal. The slightly lower crystallinity and the slower rate of crystallization are the suspected causes of this stiffness difference.
Polymer manufacturing utilizes metal parts which are reclaimed for reuse. Traditional reclamation methods utilize solvents and other chemicals which have high energy demand and involve expensive disposal methods. The DEECOM® technology, solvent-free relatively low temperature reclamation technology, is based on pressure swing techniques designed to physically disrupt and remove polymer from parts. The process mechanism results in filter reclamation procedures that have high degree of sustainability and provide opportunity to recycle the removed polymer.
Electromagnetic induction heating has many advantages such as fast heating, low energy consumption and environmental pollution reduction. Using induction heating for rapid tool heating is more economic and efficient than any of the tool heating technique. Previous studies using electromagnetic induction heating for rapid tool heating indicate that the temperature uniformity on cavity surface is not easy to be achieved no matter with surface or insert type induction heating. In this paper, a series of experiments were conducted to study the effectiveness of temperature uniformity on mold cavity surface for different induction heating coil. The parallel type coil and magnetic flux concentrators were adopted to form the induction heating device. According to the results of heating experiments, the surface temperature of 10 mm thickness hot work die steel (JIS SKD61) could rise from 50°C to 150°C in 15 seconds and the temperature uniformity of the heated zone reached 94%~95%.
84 countries and 60k+ stakeholders strong, SPE
unites
plastics professionals worldwide – helping them succeed and strengthening their skills
through
networking, events, training, and knowledge sharing.
No matter where you work in the plastics industry
value
chain-whether you're a scientist, engineer, technical personnel or a senior executive-nor
what your
background is, education, gender, culture or age-we are here to serve you.
Our members needs are our passion. We work hard so
that we
can ensure that everyone has the tools necessary to meet her or his personal & professional
goals.
Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:
Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.
Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.