SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library
After Date: (mm/dd/yy)  
Sort By:   Date Added  ▲  |  Publication Date  ▲  |  Title  ▲  |  Author  ▲
= Members Only
Various topics related to sustainability in plastics, including bio-related, environmental issues, green, recycling, renewal, re-use and sustainability.
Arnold Lustiger, May 2011
Environmental stress crack resistance (ESCR) is a critical mechanical property for polyethylene in injection and rotational molding applications. Based on a very well characterized matrix of materials with widely varying densities and melt index, we have looked at broad orthogonal composition distribution (BOCD) as a means of improving ESCR without the processability and stiffness debits. Through blending high melt index, high density components with low density, low melt index components to a target MI/ density, ESCR improvements of up to two orders of magnitude are evident over their single component counterparts.
Liam Driscoll, Joshua Anthony, Akshay Agarwal, May 2011
The testing of plastics has become decidedly different and as technology improves, it is necessary to evaluate the accuracy of results based on testing methods, particularly when functional durability is critical. The research discussed in this paper focuses on the effect of changing test parameters in relation to the falling dart impact test, more commonly referred to as the Gardner impact test (ASTM D5420). The drop weight protocol accommodates real geometries and reflects environmental conditions including temperature and percent relative humidity, as well as end-use impacting speeds but is affected by tup weight, probe diameter, and support ring.
Christian Hopmann, Walter Michaeli, Andre Potthoff, May 2011
Environmental stress cracking is the most common failure reason of plastic parts. The influence of the processing conditions e.g. of the injection molding process on the environmental stress cracking resistance has not been investigated yet. Therefore several tests are carried out at the IKV. Test specimens are injection molded with different parameters for melt temperature, mold temperature and injection rate. These parameter variations cause variable inner properties of the molded parts. The environmental stress cracking resistance of specimens with different inner properties differs in a wide range. The results are discussed in detail.
Umar Mohammad, Leigh Mulvaney-Johnson, Russell Speight, Phil Coates, May 2011
The injection moulding process has a complicated set of process parameters and is subject to variations over time resulting from material, environmental and machine component changes. In order to maintain product quality it has been proven that monitoring the process signals is beneficial towards identifying possible changes in the moulded product. Here, the process signals (melt pressure, temperature and screw displacement) are utilised along with material pressure-specific volume-temperature (pvT) characteristics to estimate the moulded product mass. The successful validation of this method presented over a range of processing conditions.
Bumsuk Lee, Byoung-Uk Nam, Dongseok Jeong, Miok Jang, ChaeHwan Hong, May 2011
Polylactide, polyester derived from renewable resources, can be synthesized using either L-lactide or D-lactide. A unique crystallization behavior of poly(L-lactide) (PLLA)/poly(D-lactide) (PDLA) stereocomplex(SC) was observed when a PLLA/PDLA blend was subjected to the specific melting conditions. Therefore, we tried to blend PLLA and PDLA at overall compositions to form PLA stereocomplexes. Moreover, impact modifier was added to enhance the mechanical properties such as impact strength. The presence of the SC in the PLLA matrix was verified by differential scanning calorimetry (DSC). Thermal and mechanical property of stereocomplexes were investigated by DSC, HDT, Izod impact tester, UTM.
Thomas Barr, May 2011
Thermoformable Fluorex Bright Film was developed to emulate the appearance of plated chrome. However, unlike plated chrome, Bright Film is flexible and thermoformable and can be applied to TPO. The film technology is environmentally friendly and cost-effective, and it has practical applications in various manufacturing processes, such as insert injection molding, thick-sheet thermoforming and extrusion lamination processes. Backed by successful weathering and other testing results, Bright Film has been accepted by the marketplace to accommodate or replace chrome plating as a decorative material for both interior and exterior finishes in the automotive and other industries.
Meaghan Farley, May 2011
The containers and closures market utilizes numerous decorating techniques on a variety of plastic and glass substrates. These decorating methods need to be functional as well as aesthetically pleasing. UV curable coatings can offer value to this market by providing high performance decorative coatings that are cost effective, easy to process and environmentally friendly. This paper will discuss the benefits of using UV curable coatings as an alternative to other ways of decorating containers, some challenges encountered in formulating coatings to meet all specifications of the containers and closures market, and typical performance and processing requirements.
Structure and mechanical properties of polymer blends incorporating waste PET
Ahmad Arefazar, Somayeh Lashgari, Soheila Lashgari , Somayyeh Mohammadian Gezaz, June 2011
Adding a compatibilizer to blends of acrylonitrile-butadiene-styrene terpolymer and recycled engineering plastic results in better mixing as well as products with enhanced properties.
A new platform for creating versatile nonwoven mats
Caroline Schauer , Marjorie Austero, June 2011
Materials suitable for filtration, sensing, and other applications can be made from composite mats prepared by electrospinning crosslinked chitosan with carbon black.
Mixed monolayers of biodegradable polymers and an organo-modified clay
Atsuhiro Fujimori, July 2011
Ultrathin hybrid films form highly-ordered layered structures and 2D lattices of long alkyl chains extending from the montmorillonite surface.
More cost-effective, superior biodegradable food packaging
Vimal Katiyar , Hemant Nanavati, July 2011
A new catalyst complex enables a precursor polymer nanocomposite to yield a high-molecular-weight, highly crystalline poly(lactic acid)-clay nanocomposite through solid-state polymerization.
Bionanocomposite foams with strong dimensional stability
Yottha Srithep, Shaoqin Gong, Lih-Sheng Turng, Srikanth Pilla, Alireza Javadi , Craing Clemons, July 2011
Microcellular injection molding can be used to fabricate lightweight, tough, and cost-effective biodegradable polymer composites.
Clay improves sustainability of polyvinyl chloride nanocomposites
Xiaoran Zheng , Marianne Gilbert, July 2011
Various processing methods are tested to examine the resulting properties of nanocomposites composed of clay and polyvinyl chloride.
Improved mechanical properties of a polylactide thermoplastic elastomer
Jie Ren , Qian Zhong, Qinfeng Wang, August 2011
A high-molecular-weight copolymer blend based on poly(lactic acid), possessing both amorphous and crystalline segments, features excellent mechanical performance and thermal properties.
Mechanical & Impact Response of Recycled Thermoplastic & Flyash Foam Composites
Uday Vaidya, September 2011
The heavy transport industry has a significant amount of scrap generated in the manufacture of parts such as trailer bodies and structural components. Presently that scrap is landfilled. This paper presents the processing and resulting properties of recycled thermoplastic composites into useful products for reuse in transportation and related applications.
Sustainability with Automotive Carbon Fibre Composites: Reclaimed Carbon Fibre — cPBT Thermoplastic Composite
Jackie Rehkopf, September 2011
PowerPoint Presentation at Automotive Composites Conference and Exhibition
Fatigue Performance of SMC Composite Material Under Different Environmental Damage & Temperature Conditions
Justin Hunt, September 2011
The Automotive Composites Consortium (ACC) a partnership of Chrysler Group LLC Ford Motor Company General Motors Company and the U.S. Department of Energy conducts pre-competitive research on structural and semi-structural polymer composites to advance high strength lightweight solutions in automotive technology. An ACC focal project concerning the development of a structural composite underbody was established to provide methodologies and data for each ACC member company to implement lightweight cost-effective structural composites in high volume vehicles. This objective will be fulfilled through design analysis fabrication and testing of a structural composite underbody. A key design element required for implementation of the underbody structure is an understanding of the affects of environmental temperature and impact damage on the axial fatigue performance of the SMC composite material selected for the underbody structure fabrication. Research efforts have been made on fatigue performance of different type of composite materials (Ref. 1-5). In this study specimens were tested with no damage as well as two levels of impact damage. Environmental temperatures for the undamaged specimens were -40°C 21°C and 80°C. It was observed that fatigue life increased at low temperature conditions and decreased at high temperatures. The affect of temperature had a greater influence on fatigue life than the impact damage in this study. Temperature increases as measured at the specimen surfaces were observed as test frequency increased. Similar observations were made by Bellenger et al (Ref.6). The relationship between stress loading frequency and temperature will be investigated. Optical and scanning electron microscopy will be used to examine the crack locations and characteristics for specimens tested under different conditions.
Polyacrylonitrile/acrylamide-based carbon fibers prepared using solvent-free coagulation
Norhaniza Yusof , Ahmad Fauzi Ismail, September 2011
Polymer precursors of carbon fibers made using an environmentally friendly process show mechanical and thermal properties comparable to those prepared by conventional methods.
Post Consumer Recycled Plastics in Electronic Products
James Drummond, October 2011
Closed Loop Inkjet Cartridge; Recycling Program: – Cartridges torn down and 100% recycled – Recycling/Cleaning partners – PPO/PS resin is collected – Cleaned and recompounded – Compounding partners – Reintroduced into new ink cartridges
Removing Barriers to Create a Better World
John Bradburn, October 2011
All manuf. sites will have a wildlife habitat certification or equivalent (where feasible) • GM will utilize 125 MW of renewable energy sources • Reduce energy intensity by 20% (baseline 2010) • Reduce carbon intensity by 20% (baseline 2010) • Reduce total waste by 10% (baseline 2010) • Reduce water intensity by 15% (baseline 2010) • Reduce VOC intensity by 10% (baseline 2010) • 100 mfg. sites and 25 non-manufacturing sites are landfillfree

This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.

  Welcome Page

How to Reference Articles from the SPE Library:

Brief version (acceptable):
Author(s), SPE-ANTEC Tech. Papers, vol. no., page no. (year).
Proper version (preferred):
Author(s), “Title,” SPE-ANTEC Meeting in location: month, year, vol. no., page no.