SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library
Keyword/Author:
After Date: (mm/dd/yy)  
 
Sort By:   Date Added  ▼  |  Publication Date  ▼  |  Title  ▼  |  Author  ▼
= Members Only
Recycling
Various topics related to sustainability in plastics, including bio-related, environmental issues, green, recycling, renewal, re-use and sustainability.
DEVELOPMENT OF MODIFIED POLYLACTIDE (PLA)
H. Kishimoto | A. Takenaka | H. Moriwaka | H. Enomoto, November 2011
Polylactide (PLA) and other bio-based plastics have been attracting much attention for environment problems. In this report, modified PLA resin have been developed and based on “Technology of Nano-Modification for Polymer”, such as control of softening and of crystallization in nano size. Two types of modified PLA of which one is clear and soft PLA for extrusion molding and another one is high moldability PLA for injection molding have been developed. These modified PLA have been applied as alternative plastics of PP and ABS to stationery, packaging, convenience goods, electrical appliance and so on. Performances and technologies will be presented.
Development of novel Wood Plastic Composites (WPC) using as natural filler wood from the recycling of leisure sailing ships
M. de la Fuente | M. Martínez-Palau | A. García | N. González-Vidal | L. Piñol | L. Aubouy, November 2011
Plastic Wood Composites, or commonly known as WPC, are a novel and interesting alternative to the usage of wood in certain applications, improving the properties of the final products thanks to the polymers intrinsic properties. However, compatibilization between the polymer matrix and the wood fibers or particles is a key factor that must be taken into consideration. Hydrophilic fibers are not compatible with hydrophobic polymer matrices, such as polyethylene or polypropylene (the main used polymers due to their processing temperatures and the low degradation temperature wood possess). The present research aimed to develop WPC using as the natural fiber recycled wood obtained from out-of-use leisure sailing ships. The objectives of the research presented and added new challenges on the development of such natural composites, posed by the state of the wood to be used, usually contaminated with salt, rests of minerals and rests of organic matter, so an excellent decontaminating process was a must. Once the wood conditioning processes were completed, a conventional extrusion process was carried out to obtain the WPC. The polymers used as polymer matrix were Low Density Polyethylene (LDPE) and Polypropylene (PP). Four different concentrations of wood fibers were used (10%, 20%, 30%, 40%) in order to determine their properties according to the fiber concentration. Also, two different compatibilizers for wood and polymers were used to check their behavior, as well as composites without compatibilizers were obtained. Finally, characterization techniques, including SEM microscopy, mechanical and impact properties and aging tests were carried out for all the developed WPC composites. Results indicate which were the best wood concentration on the composites as well as the best compatibilizer and its concentration on the final composite.
DEVELOPMENT OF STARCH BIOBASED AND BIODEGRADABLE PLASTICS FOR THEIR USE IN TRAYS FOR FOOD-PACKAGING
A. Lopez-Gil | M.A. Rodriguez-Perez | J.A. De Saja | F.S. Bellucci | M. Ardanuy, November 2011
This research work develops new methods to produce biodegradable starch-based trays for the purpose of replacing expanded polystyrene in the food packaging market. The starch based biopolymers present several drawbacks like poor mechanical properties and very high density. In order to overcome these drawbacks two research lines have been set up: blending thermoplastic starch with biobased reinforcements from agricultural wastes like barley straw and grape wastes, and testing the foamability of these materials with a Microwave-foaming method.
Recycle of Internal and External streams of Polyetherimide Resin
Edward Venema, November 2011
One of the main advantages of polyetherimide (PEI) resin (Ultem* PEI) is its high thermal stability, making it an excellent candidate for using internal industrial recycle, external industrial recycle (sprues, runners, parts) and post-consumer recycle as raw material streams. A 30% glass fibre filled grade has been developed using up to 65% of non-virgin material. Mechanical properties were maintained even at high % usage of recycle. *(Trademark of Sabic Innovative Plastics IP B.V.)
EFFECT OF PHYSICAL AGING ON ENTHALPY RELAXATION AND EMBRITTLEMENT OF ELASTOMER THERMOPLASTIC BIODEGRADABLE POLY (L-LACTIDE/ ε-CAPROLACTONE)
Susana Petisco | Jone M. Ugartemendia | Jorge Fernández | Jose-Ramon Sarasua, November 2011
In the design of new polymeric materials the longterm stability and durability are matters of considerable importance. It is known that during physical aging volume contraction and densification of polymers occur and therefore physical properties such as mechanical or crystallization behavior of amorphous polymers may be affected. In this work the impact that physical aging has on two biodegradable poly(L-lactide/ε-caprolactone) (PLCL) copolymers differing on their randomness character was studied. Their thermal behavior has been evaluated by specific aging strategies using Differential Scanning Calorimetry (DSC).
SILICONE MODIFIED BIOBASED COATINGS FROM SOYBEAN OIL FOR WATER RESISTANT PAPERS
Shilpa Manjure | Guoren Cheng | Dan Graiver | Ramani Narayan, November 2011
The silylation chemistry of biobased vegetable oils using alkoxy silanes has been studied and patented [1]. The objective of this work was to evaluate the application of the newly developed silylated soyabean oil formulation as a water-proof coating on paper. Paper coated with the silylated oil was tested for water resistance by measuring Cobb test. Results showed upto 95% improvement in water-proofing compared to an uncoated, unmodified paper.
THE EFFECT OF COMPOSITION AND PROCESSING PARAMETERS ON THE MORPHOLOGY AND PROPERTIES OF PC/ABS/ORGANOCLAY NANOCOMPOSITES
Marianna I. Triantou | Petroula A. Tarantili, November 2011
In this study | blends based on poly(acrylonitrile-butadiene-styrene) (ABS) and polycarbonate (PC) were prepared and studied | in an attempt to explore the performance of mixtures deriving from recycling of waste electrical and electronic equipment (WEEE). The modification of ABS and ABS/PC blends via the incorporation of reinforcing fillers | such as organic modified montmorillonite nanoparticles (OMMT) | was also explored and its effect on the structure and properties was evaluated.
TRENDS AND NEEDS IN AUTOMOTIVE MATCHED BY ECO+ SOLUTIONS FROM DSM
Bert Havenith, November 2011
An overview is given of the various drivers, needs and trends in the automotive industry and how these are matched by various new plastic solutions, which in the end all significantly increase the sustainability of various car components and of the complete cars in total.
Lexan* Specialties Copolymers - Performance Attributes for Automotive Applications
André J.P. van Zyl | Robert D. van de Grampel | Tapan Chandra, November 2011
Lexan* copolymers offer new performance attributes in comparison to conventional polycarbonates by combining building blocks from different monomeric species. In doing so the application space of polycarbonates are expanded to include e.g. weatherability and scratch performance. By improving these attributes on an intrinsic level unique value propositions can be realized which include non-hardcoat or paint-out solutions. This can lead to cost-out opportunities and environmentally friendlier solutions. To emphasize application possibilities in the automotive industry, attributes are considered with regards to scratch, chemical and UV resistance for both Lexan* DMX and SLX resins.
LIFE CYCLE ASSESSMENT OF METALLOCENE POLYETHYLENE IN HEAVY DUTY SACKS
Abdelhadi Sahnoune, November 2011
The substitution of plastic for more traditional materials stems from its reliability and affordability. However, with the heightened awareness on sustainability, plastic from fossil sources are sometimes perceived to adversely impact the environment. In an effort to address this issue, a detailed life cycle assessment of heavy duty sacks made from metallocene polyethylene (mPE) has been completed. The sacks are used in packaging powdered products for the construction industry. The results show that these sacks have several positive attributes and in many instances, may be a preferred alternative from a sustainability perspective. In fact, in manufacturing, transportation and handling mPE sacks are shown to consume significantly less energy and emit less greenhouse gas than paper-based alternatives. Additional environmental benefits will be discussed.
Modeling Container Shelf Life & Top Load Performance
Scott W. Steele | Sumit Mukherjee | Mark Rule, November 2011
The use of performance modeling is becoming more and more critical to the packaging industry. This trend is driven both by lightweighting efforts and the need to shorten package development times. The primary driver for reducing the amount of material used in packaging is cost reduction, with environmental positioning an ancillary benefit. However, it is critical to not compromise the shelf life or creep performance of the package, particularly in regions of the world with temperature extremes. This paper will explain key elements necessary for precise modeling of package shelf-life performance. The mathematical models considered are M-RULE® Container Performance Model and Virtual Prototyping™ Software. Some examples of how computer modeling has been applied to optimize package performance will be discussed.
NEW STRUCTURAL BIOCOMPOSITES FOR CAR APPLICATIONS
Jiying Fan | Elias Nassiopoulos | James Brighton | Alain De Larminat | James Njuguna, November 2011
Recently advances in research and manufacturing techniques of biocomposites have allowed the car manufactures to use bio-composite in various applications. Biocomposites are fast emerging as viable alternative to traditional materials due to their low cost, lightweight, good mechanical performance and biodegradable properties. ECOSHELL project (Development of new light high-performance environmentally benign composites made of bio-materials and bio-resins for electric car application) proposes to achieve a full bio-composite made of high performance natural resins matrices, resulting in the use of totally natural, environment friendly composites, with enhanced strength and bio-degradability characteristics designed for the electric car.
OPTIMUM FLOURPLAST: CREATING NEW OPPORTUNITIES FOR THE BIOPLASTIC INDUSTRY. PROCESS STRUCTURE PROPERTY RELATIONSHIPS OF A NOVEL BIOPLASTIC POLYMER COMPOUNDING SYSTEM
Jeroen J.G. van Soest | Arthur J.A.A. van der Meijden | Nolan J. Leenards,, November 2011
This paper describes an outline of the structural features (using SEM, WAXS and other advances techniques) and various properties of products containing compatibilised thermoplastic flour (i.e. Optimum FlourPlast). Grain or cereal flour or even purified starches are them self not thermoplastic materials [1]. The thermoplastic flour (TPF) is made from an unique combination of natural based grain (by-) products and a novel compatibilising polymer system making it a thermoplastic material, which can be processed on standard plastic processing machines. The TPF is as such shown to be highly compatible with natural or petrochemical based biodegradable aliphatic (co-) polyesters and various polyolefins such as polypropylene. In such combinations it is shown that it improves processing conditions and enhances the properties of the end formulation (compounds). By making different combinations of the various grades of the TPF (i.e. building block system of precompounds) with other polymers it will be shown that it is possible to obtain a range of products with different properties and good functionality. This made it possible to process the components into products suitable for various applications such as injection molding, extrusion and thermoforming, and film blowing and casting.
PRELIMINARY FAILURE EXAMINATION OF A TOOL USED IN TYRE WASTE RECYCLING - CASE STUDY
A.Maragiannis | D. Papageorgiou | C. Medrea | Stasinopouloi-Uddeholm, November 2011
Tyres consist of synthetic rubber | metals and linen. Tyre waste decomposes after hundreds of years | and its presence is detrimental for the environment. Standing water | trapped into tires may be a permanent pollution source | while tyre waste next to a forest increases the possibility of fire. European legislation imposes the recycling of tyre waste | which includes the following three steps: shredding in strips | cutting strips in small pieces | and powder production from the pieces. At the last stage magnets remove the metallic pieces | while centrifugal screens remove the linen. Metals are sold to the steel industry as scrap | linen is used in limekiln as a combustion material and the rubber flakes are used in numerous applications (e.g. road surface construction, concrete additives | mouse pads | etc.).
PVC – Moving Up to the Next Level
Stuart Patrick, November 2011
The papers from the most recent IOM3 conference, PVC 2011, are used as the basis for this paper. The PVC market is reviewed on the basis of Europe’s environmental challenges with management options being reshaped by global megatrends. The cost competitiveness of PVC products, energy saving from using PVC products and increasing recognition of our sustainable development progress can only serve our industry well into the future. The Voluntary Commitments of the past ten years (Vinyl 2010) and the next ten years (VinylPlus) are reviewed. Examples of educational initiatives in the UK to improve perceptions are also highlighted.
Renewable Based High Performance TPU
J. Santamaría, November 2011
The company Merquinsa SL | located in Barcelona | Spain | produces classical polyurethane as well as new (ECO) polyurethane based on several raw materials from renewable sources. This particular study was based on biogenic oil as primary renewable source for TPU. A new family of thermoplastic polyurethanes (TPU) is presented. This new TPU series has application for polyurethane adhesives | polyurethane for extrusion | and injection molding markets. A full range of vegetable plant-based sources derived from bifunctional polyols has been developed. The reaction of these polyols in the TPU formulation allows new TPU with a renewable content ranging from 30% to 90% by weight. Compared to the standard petrochemical-based grades | the new ‘green-TPU’ shows better hydrolytic resistance | and maintain equivalent mechanical properties like first-class thermoplastic polyurethanes. Merquinsa will present the latest results for its ECO-TPU range | based on different renewable raw materials.
Surface Modification Techniques for Optimizing Adhesion to Automotive Plastics
Rory A. Wolf, November 2011
Automotive plastics with a low polarity, such as PE, PP, TPO, POM, PUR and PTFE typically require surface treatment when decoration is required. Metallic surfaces may also require cleaning to remove low molecular weight organic materials prior to decoration. Once the above-mentioned interior and exterior grades of substrate surfaces are cleaned and activated, printing, gluing and painting are possible without the use of adhesion-promoting primers. This paper describes the latest innovations in three-dimensional surface treating technology for plastics finishing which address the need to advance adhesion properties, increase product quality, and achieve environmental objectives within the automotive industry. These innovations include advanced thermal and non-thermal discharge treatment processes for raising the polarity of surfaces to be painted, bonded, decorated, laminated, printed, or to have tape applied.
SYNTHESIS OF ELASTOMERIC PHENOLIC RESINS WITH IMPROVED TOUGHNESS AND FLEXIBILITY
Cardona F. | Fedrigo J., November 2011
Novel phenolic resins (PF) with improved fracture toughness and flexibility properties were synthesised and evaluated. A first modification consisted in the copolymerization of Phenol with a natural renewable component (Cardanol) during the synthesis of PF resins (CPF). An increases in the content of Cardanol resulted in a proportional increases in the flexural strength and in the fracture toughness together with a decreases in the flexural modulus of the cured CPF/PF blended resins. Further increased plasticizing and toughening effect was observed by the blending of the CPF/PF resins with propylene glycol (PG).
UPGRADING PERFORMANCE OF RECYCLED POLYAMIDE WITH ZEMAC®
Ashok M. Adur, November 2011
Polyamides are widely used in many applications. There is a vast amount of recycled polyamide coming from the carpet and textile and other industries. Due to degradation and loss of viscosity, this recycled polyamide has reduced performance and limited its use. The unique chemistry of alternating copolymers of ethylene and maleic anhydride provide several advantages for upgrading recycled polyamide. This paper discusses the results obtained with compounding prime grade polyamide as well as recycled polyamide with the addition of small quantities of this copolymer and specific property improvements for applications in injection molded compounds.
Bioplastic nano-reinforcement extracted from phormium leaf fibers
Carlo Santulli, Marco Monti, Jose Maria Kenny, Elena Fortunati, Luigi Torre, Debora Puglia, November 2011
Cellulose nanofibers from a native New Zealand plant are extracted for use as fillers for biodegradable polymers.


This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.




spe2018logov4.png
  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net