SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library
After Date: (mm/dd/yy)  
Sort By:   Date Added  ▲  |  Publication Date  ▲  |  Title  ▲  |  Author  ▲
= Members Only
Various topics related to sustainability in plastics, including bio-related, environmental issues, green, recycling, renewal, re-use and sustainability.
Marine Biodegradation of PLA, PHA, and Bio-additive Polyethylene Based on ASTM D7081
Joseph P. Greene, October 2011
Topics: Introduction • Marine Pollution • Biodegradable Plastics Definitions • Biodegradation Results: – Compost testing – Marine testing • Conclusions
Improved Recycling of Difficult to Process Materials.
John Capece, October 2011
Common Issues With Recycling Heavily Printed Materials: Printing inks contain binders and additives that emit gases when heated to required melt temperatures. Gases and other contaminants enter melt and often result in poor quality pellets.
A Comparison of Technologies to Recycle Mixed and Dirty Plastics
Dr. Brian Coleman and Dr. Seetha Coleman-Kammula, October 2011
US EPA waste plastics data show that in 2010: A total of 31 million tons of plastic waste was generated making up 12.4 % of total MSW. Only 8 % of this waste was recovered for mechanical recycling. The rest most likely goes to landfills as dirty and soiled plastic.
Comparative Life Cycle Assessment (LCA) of Bio-Fibers, Mineral and Glass Fiber Reinforced Polypropylene Composites
Andrew Hopkins, October 2011
Embodied energy values were determined for bio-fibers, mineral and glass fiber using data obtained from recently published technical papers. This data, together with other LCA and actual physical property data was used to explore the comparative performance and environmental footprints for a wide range of reinforced polypropylene composites. The data show that RheVision® bio composite materials present competitive and useful physical performance coupled with improved environmental impacts.
Unique Performance Characteristics of New, Durable, Biobased Polyamide and Copolyester
Jim Conkey, October 2011
Plant oil based derivatives have been noted in polymer chemistry dating back to the fist developments of polyamides in the 1940's. In the world of elastomers, natural rubber has always been plant based. Today the use of bio mass derivatives has gained new attention given the quest to reduce the dependence of polymer production on petroleum sources. One notable monomer is sebacic acid derived from caster oil and used in polyamides. The advantage this monomer brings to the resulting polymers is not its Green Character alone. First, it can be applied to standard polymerization processes already in place for making the petroleum based relatives. This is a key aspect in bringing new bio based polymers to market at scale and cost effectively. Second, it imparts unique performance characteristics that differentiate the resulting polymers from their petroleum based relatives. This allows them to fill true performance gaps in their polymer families. We will examine the performance characteristics of PA 410 relative to the existing range of polyamide demonstrating that unique features (and ultimately - economic value) beyond Green Character can be realized.
Advancements in Marine Biodegradable Bioplastics
Robert Whitehouse, October 2011
The erosion of our coastlines and estuaries is a problem that is getting some help from an unlikely source – bioplastics. Restoration is achievable through sound planning, use of advanced environmental practices, and understanding the importance of natural habitat in both the water and surrounding land. However, advances in bioscience can help achieve these goals. We will discuss how the properties of bioplastics make the material a suitable solution for manufacturing marine-related products. Certain bioplastics have the unique ability to biodegrade in marine and freshwater environments, in accordance with ASTM D7081 for marine-biodegradable non-floating plastics. This standard specification, along with the standard method ASTM 6691 for determining aerobic biodegradation of plastic materials in the marine environment, was developed at the U.S. Army Natick Soldier Research, Development and Engineering Center (NSRDEC) in Natick, Massachusetts, with support from the U.S. Navy and the Waste Reduction Afloats Protects the Sea (WRAPS) Program. This session will explain what is required to meet the standards for the biodegradation of water-resistant yet marine-biodegradable bioplastics. The presentation will also discuss how bioplastics safely biodegrade in marine environments, highlighting the types of commercial product applications that are ideal for these new materials.
Marine Biodegradation of PLA, PHA, and Bioadditive Polyethylene Based on ASTM D7081
Joseph P. Greene, October 2011
PHA compostable plastic materials demonstrated marine biodegradation per ASTM D-7081 standard. Two PHA-based films and cellulose paper biodegraded over 30% after 180 days while at 30°C and under conditions of the ASTM D-6691 test method. Biodegradation was measured by CO 2 evolution from samples in glass jars. PLA based plastic cup, PLA-based snack bag, and polyethylene film negative control did not meet 30% biodegradation in 180 days. Bio-additive polyethylene based trash bag and ziplock bags did not meet the marine biodegradation standards in ASTM D-7081.
Improving the Mechanical Properties of Polyethylene and Polypropylene Recycled Streams using Polyolefin Elastomers and Functionalized Polyolefins
Ray L. Laakso, October 2011
An important attribute for many plastics is the ability to be recycled. By melting and reprocessing thermoplastics for re-use, the carbon footprint can typically be reduced compared to the use of virgin materials. The benefits of incorporating recycle content into new and existing applications, however, must be tempered by the reality that recycled plastics may not have the same performance as virgin materials due to either 1) degradation by weathering/aging, 2) contamination, or 3) thermo-mechanical degradation from re-processing. To minimize the intrinsic effects of the recycling process and allow usage of recycled plastics such as polyethylene (PE), polypropylene (PP), or streams with mixed content, it is important to understand the benefits of utilizing impact modifiers and compatibilizers.
Reclamation of Polyester Waste: Cost Effective Improvement in IV and Melt Viscosity
Michael Kutsenko, October 2011
Reclamation of polyester waste in the fiber industry is well known and a seemingly well developed process. It offers numerous benefits to fiber producers. These benefits include but are not limited to the following: conservation of oil, reduction of greenhouse gas emissions, saving landfill space and energy conservation. Unfortunately, in spite of these benefits, total recycling of polyester does not exceed 25%. The main reason for low recycling rates is the hydrolytic instability of polyester resin leading to a severe drop in the polymer’s viscosity. This deterioration in polyester viscosity is amplified due to high temperatures and shear rates involved in fiber processing. Existing methods to preserve IV and melt viscosity of polyester resin include solid state polymerization (SSP), and gaining popularity in the last 25 years, Erema recycling technology. Both of these approaches include significant capital investment in equipment and both are rather energy consuming. We are offering an alternative approach to maintain or even increase IV of polyester resins during recycling or direct processing of fibers and yarns. Developed by Goulston Technologies, internal polymer additives work like linear chain extenders and offer a cost effective improvement in IV and melt viscosity of polyester resins. These additives are based on bi-functional reactive chemicals and are available in a form of highly concentrated master batches that can be dosed directly into the waste stream. These additives are capable of significant increase in IV and melt viscosity without cross linking and corresponding gel formation, and clogging of the spinning packs. This additive technology offers polyester processors a safe and cost effective alternative to capital intensive investments.
Paper-Plastic Biocomposites
Takamichi Matsushita, October 2011
ECO Research Institute (ERI) has developed a dry grinding method that pulverizes waste paper to the micron size range and that powdered recyclate is then used as filler in thermoplastics. Using this technology reduces carbon-dioxide emissions by as much as 60-80 percent compared to using traditional thermoplastics while also enhancing mechanical properties. ERI has seen its business growth very rapidly in Japan as the technology does not suffer from any of the processing and performance limitations of other bio-plastics. The ERI materials are now widely used in automotive, electric, food, housing, transportation and toy industries. ERI is now expanding capacity through its US subsidiary in cooperation with Michigan Molecular Institute, which will bring compounding capabilities to the U.S. under the name Eco Bio Plastics Midland, Inc. Paper has been one of the oldest products for the history of human being and it has been produced on a huge scale basis all over the world. The basic application relies on the technology of utilizing long cellulose fiber for processing. Paper is also known for high level of recycling, mostly by producing recycled paper. We have investigated the possibility of: 1. Finding new technology of paper other than the application of long cellulose fiber 2. Recycling paper other than producing recycled paper 3. Creating more environmentally friendly material by utilizing non-hydrocarbon based paper We have succeeded in developing new technology of pulverizing paper into micro powders as minute as 30μm and compounding it with conventional plastics in the form of pellets for the purpose of mass production. Pellets can contain up to 70% paper. This paper-reinforced plastic composite can reduce CO2 emission dramatically since the main material is paper. Currently the technology is commercially available in polypropylene for injection molding or thermosetting products but other formulation with different based materials such as PE, PS, PLA and PHA for different processing is on-going.
Development of a Recycling Database for Material Re-Use and Landfill Tracking
Keith D. Weyer, October 2011
International Automotive Components Group has developed an internal database to track manufacturing scrap, material re-use, landfill and team action items among other things. The database enabled IAC to measure the amount of landfill resulting from various processes and then target specific areas. Regrind use was optimized to assure quality and best possible application. Via this database, landfill numbers, regrind use, and projects were graphically displayed to show the progress in each area. The database proved the adage ‘What is measured is managed and what is managed is improved” Examples of the capabilities of the database will be presented. The ability to track and measure also proved this database to be a very useful tool for management reporting. Based on these efforts, IAC was able to reduce their landfill from manufacturing by 36 million pounds in 2010.
Research and Application of Post Consumer Recycled Plastic in Electronic Products
James Drummond, October 2011
Over the years there has been an on again - off again relationship between consumer electronic products and post consumer recycled materials. The use of these materials is ultimately desired for the environmental benefit to our world, but also for the potential financial benefit of reclaiming a high value waste stream. To most outside the plastics or recycling industries, recycling plastics seems like a simple and obvious thing to do. The reality of it however is much more complicated. Ever-changing variables such as supply and demand, shifting waste streams, environmental regulations, and the price of oil, keep the sand shifting under the feet of those trying to succeed in this field. We will try to bring to light many of the issues and present some achievements along the way. With the learning of the past twenty years and new technological advancements it seems that this industry is beginning to turn a corner and achieve a stable, quality supply of post consumer recycled (PCR) materials. Coupling this improved supply with a more stable and increasing demand for Post consumer materials may make it possible for recycled engineering plastics to soon make their way into more consumer electronic products.
Methods for Protecting Polymer Recycle Chain and Intellectual Property of Advanced Polymers
Ben Eick, October 2011
The financial burden that accompanies the recycling of polymers when required by local laws and regulations will continue to grow in the next decade as more counterfeit products enter the marketplace. Manufacturers will begin spending more time and money attempting to recycle materials they did not produce than on actual production. In the same vein, companies that continue to innovate and produce specialty polymers are susceptible to counterfeiting. Counterfeiting leads to financial liability from product failures and losses in both customer confidence and revenue. When forced to recycle another manufacturer’s polymers, a company exposes themselves to the possibility of introducing inferior, harmful, and possibly dangerous polymers into their production facility and eventually into the hands of consumers. This exposes polymer producers and brand owners to liability if there are illnesses or product failures from recycling counterfeit materials. If inferior product is not detected prior to the time of recycling, a large amount of resources will be occupied separating good and bad polymers, increasing the likelihood that the cost of goods produced from recycled materials will be priced out of the market. Manufacturers and recyclers need tools that can be used to help them instantly identify their product from counterfeit materials. This paper will present several options to protect the polymer supply chain from cradle to grave to and back to cradle, methods to help reduce liability from inferior raw materials entering the marketplace, and protect intellectual property by ensuring advanced, specialized polymers are from legitimate sources.
Sustainability from Start to Finish: The Lifecycle Impacts of Plastic Packaging
Kelly Polich, October 2011
Sustainability is now a business fact, yet many of those asking for improvements to “sustainable packaging” lack the fundamental understanding needed to make the best possible business decisions. Scientific information is needed from production to end-of-life to determine what makes a package more “sustainable”. The 3 Rs (Reduce, Reuse, Recycle) are often the first steps for many individuals and businesses on their journey to becoming more sustainable, although new “R’s” such as Renew and Recovery are appearing. Using science-based criteria can help improve the understanding of how plastic packaging contributes to a sustainable society. Plastic packaging can prevent spoilage and damage to food and other products during distribution and storage. Plastics are light weight and frequently require less raw material and energy than other materials used for packaging. Plastics can be recycled and recovered at their end-of-life. Significant progress has also been made in the development of bio-plastics, but there continues to be confusion as to what bioplastics are and how to properly assess their environmental impact. Sustainability performance cannot be defined with a single attribute but must consider a product’s entire life cycle. This abstract/presentation will begin with examples demonstrating the sustainability benefits of plastic packaging, then define what bio-plastics are and why the diversity of bioplastics and their varying properties make it difficult to make simple, generic assessments as to whether plastics made from traditional or renewable feedstocks are “good” or “bad”, and conclude with a discussion of end-of-life options for packaging, including recycle-to-energy.
Marketing the Message of Sustainable Plastics Packaging
Mike Tolinski, October 2011
Recycled-content or bioresin packaging will require more than just the right technology and materials for sustained growth. Sustainable packaging expansion will also require increasing the number of informed, enthusiastic retailers and packaging users that are interested in being “greener.” This paper examines one way in which resin, packaging, and packaged-goods producers are attracting attention to the recycled-content, recyclability, or bio-basis of new plastics packaging. Messages on the packaging itself are used to make green claims and create branding, sometimes approaching (or overstepping) the boundaries of “greenwashing.” This paper considers the effectiveness of various messages, and, referencing proposed 2010 U.S. Federal “Green Guides,” considers the ways in which a clear, honest sustainability claim can be communicated to both informed and skeptical audiences.
Recent Advancements in Regrind Properties of Long-Glass Reinforced
Sue Kozora, October 2011
Two separate studies were completed to look at recovery of long glass fiber (average glass length = 10-15 mm) reinforced polypropylene. The LGF PP regrind in one case was molded at various percentages with virgin material and the other study involved property evaluation of 100% LGF PP regrind. The basis of the study was to evaluate use of typical grinders (grind size of 5/16”) and extruders to simulate conditions commonly found in most plastics molding facilities. Recommendations for addition of regrind to virgin materials are also presented based on evaluation of the properties obtained.
Material Separation and Recycling of Mixed and Shredded Plastics from used Household Appliances
Koji Hamano, October 2011
The separation and recycling technologies of shredded plastic mixture from waste household appliances have been developed. The separation technology was based on the characteristics of specific gravity, electrostatic charge and X-ray transparent of the plastics. The separated plastics were recycled by the technologies of contaminant reduction and material reformation. Furthermore, the first massive and high purity plastic recycling plant for polypropylene (PP), polystyrene (PS) and acrylonitrilebutadiene- styrene (ABS) in Japan has launched in 2010. This plant is able to separate the shredded plastic mixture up to 10,000 ton annually, and the recycled PP, PS and ABS have high purity more than 99%.
Shredder Technologies for Improving Resin Reclamation Processes and Economics
John Farney, October 2011
Reclaim extrusion lines rely on high quality reclaimed resin, which must come from balanced, high performance, and properly designed reclaim lines. These systems must be properly configured for the tasks at hand, and the implementation must allow for the complete business plan. Material volume is not the only data point upon which such a system must be judged on. If simple volume were the judgment, reclaimers, recyclers, and reprocessors would simply buy the largest and cheapest solutions available. Nothing could be further from the truth. Inadequate processing capabilities of the size reduction equipment can cause many problems, including the following: • Poor quality regrind • High levels of material degradation • Possible material contamination • Poor performance due to machine maintenance and overall condition • Poor material ingestion and processing • Improper operation due to machine design
Feeding and Blending Systems for Reclaim Extrusion
Keith Larson, October 2011
Extrusion lines rely on the feeding and blending systems, and other auxiliary equipment, that work with them. This equipment supplies the regrind, resin and additive materials, cools the process, maintains critical temperatures and can even monitor the entire operation. Inadequate process cooling, material handling or size reduction equipment can cause many problems, including the following: • Inadequate process cooling can reduce product output • Poor temperature control can cause product quality problems • Material can be contaminated if not handled and stored properly • The output of the line can be reduced, and even interrupted, if the material is not conveyed to the extruder at the required rate • Product quality will suffer if the material is not blended and metered into the extruder throat at the correct ratios • Excess dust caused by poor size reduction equipment can create processing problems
Drying and Crystallizing Systems for Reclaim Extrusion
Jeff Courter, October 2011
Many reclaim lines require moisture removal from the regrind material, and a PET reclaim extrusion line will not operate properly if the drying and crystallizing system cannot supply the material into the feed throat at the desired moisture content, temperature and intrinsic viscosity (I.V.). A proper drying and crystallizing system can be the difference between quality product and junk, so it is worthwhile to consider some features of the new equipment for your system: • Correct sizing and proper operation • New filter systems for increased performance • High-efficiency motors • New user-friendly PLC-based control systems • Heat recovery systems • Gas-fired options • Integration with extruder control system The following equipment is crucial to any reclaim extrusion line: • Hot air dryer (material dependent) • Crystallizer (material dependent) • Dust collection system • Dryer and hopper sized for the application • Loading system

This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.

  Welcome Page

How to Reference Articles from the SPE Library:

Brief version (acceptable):
Author(s), SPE-ANTEC Tech. Papers, vol. no., page no. (year).
Proper version (preferred):
Author(s), “Title,” SPE-ANTEC Meeting in location: month, year, vol. no., page no.