SPE-Inspiring Plastics Professionals

SPE Library


SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!
Conference Proceedings
Magazine and Collected Articles
Newsletters (SPE Chapters)
Recycling
Rheology
Podcasts
Technical Article Briefs
Webinars
Plastic Surveys
Diversity. Equity and Inclusion
SPE News
SPE YouTube Channel
Event Recordings

Use % to separate multiple keywords. 


Search SPE Library
    
    




Sort By:  Date Added   Publication Date   Title   Author

Recycling

Various topics related to sustainability in plastics, including bio-related, environmental issues, green, recycling, renewal, re-use and sustainability.
Marine Biodegradation of PLA, PHA, and Bioadditive Polyethylene Based on ASTM D7081
Joseph P. Greene, October 2011

PHA compostable plastic materials demonstrated marine biodegradation per ASTM D-7081 standard. Two PHA-based films and cellulose paper biodegraded over 30% after 180 days while at 30°C and under conditions of the ASTM D-6691 test method. Biodegradation was measured by CO 2 evolution from samples in glass jars. PLA based plastic cup, PLA-based snack bag, and polyethylene film negative control did not meet 30% biodegradation in 180 days. Bio-additive polyethylene based trash bag and ziplock bags did not meet the marine biodegradation standards in ASTM D-7081.

Improving the Mechanical Properties of Polyethylene and Polypropylene Recycled Streams using Polyolefin Elastomers and Functionalized Polyolefins
Ray L. Laakso, October 2011

An important attribute for many plastics is the ability to be recycled. By melting and reprocessing thermoplastics for re-use, the carbon footprint can typically be reduced compared to the use of virgin materials. The benefits of incorporating recycle content into new and existing applications, however, must be tempered by the reality that recycled plastics may not have the same performance as virgin materials due to either 1) degradation by weathering/aging, 2) contamination, or 3) thermo-mechanical degradation from re-processing. To minimize the intrinsic effects of the recycling process and allow usage of recycled plastics such as polyethylene (PE), polypropylene (PP), or streams with mixed content, it is important to understand the benefits of utilizing impact modifiers and compatibilizers.

Reclamation of Polyester Waste: Cost Effective Improvement in IV and Melt Viscosity
Michael Kutsenko, October 2011

Reclamation of polyester waste in the fiber industry is well known and a seemingly well developed process. It offers numerous benefits to fiber producers. These benefits include but are not limited to the following: conservation of oil, reduction of greenhouse gas emissions, saving landfill space and energy conservation. Unfortunately, in spite of these benefits, total recycling of polyester does not exceed 25%. The main reason for low recycling rates is the hydrolytic instability of polyester resin leading to a severe drop in the polymer’s viscosity. This deterioration in polyester viscosity is amplified due to high temperatures and shear rates involved in fiber processing. Existing methods to preserve IV and melt viscosity of polyester resin include solid state polymerization (SSP), and gaining popularity in the last 25 years, Erema recycling technology. Both of these approaches include significant capital investment in equipment and both are rather energy consuming. We are offering an alternative approach to maintain or even increase IV of polyester resins during recycling or direct processing of fibers and yarns. Developed by Goulston Technologies, internal polymer additives work like linear chain extenders and offer a cost effective improvement in IV and melt viscosity of polyester resins. These additives are based on bi-functional reactive chemicals and are available in a form of highly concentrated master batches that can be dosed directly into the waste stream. These additives are capable of significant increase in IV and melt viscosity without cross linking and corresponding gel formation, and clogging of the spinning packs. This additive technology offers polyester processors a safe and cost effective alternative to capital intensive investments.

Paper-Plastic Biocomposites
Takamichi Matsushita, October 2011

ECO Research Institute (ERI) has developed a dry grinding method that pulverizes waste paper to the micron size range and that powdered recyclate is then used as filler in thermoplastics. Using this technology reduces carbon-dioxide emissions by as much as 60-80 percent compared to using traditional thermoplastics while also enhancing mechanical properties. ERI has seen its business growth very rapidly in Japan as the technology does not suffer from any of the processing and performance limitations of other bio-plastics. The ERI materials are now widely used in automotive, electric, food, housing, transportation and toy industries. ERI is now expanding capacity through its US subsidiary in cooperation with Michigan Molecular Institute, which will bring compounding capabilities to the U.S. under the name Eco Bio Plastics Midland, Inc. Paper has been one of the oldest products for the history of human being and it has been produced on a huge scale basis all over the world. The basic application relies on the technology of utilizing long cellulose fiber for processing. Paper is also known for high level of recycling, mostly by producing recycled paper. We have investigated the possibility of: 1. Finding new technology of paper other than the application of long cellulose fiber 2. Recycling paper other than producing recycled paper 3. Creating more environmentally friendly material by utilizing non-hydrocarbon based paper We have succeeded in developing new technology of pulverizing paper into micro powders as minute as 30μm and compounding it with conventional plastics in the form of pellets for the purpose of mass production. Pellets can contain up to 70% paper. This paper-reinforced plastic composite can reduce CO2 emission dramatically since the main material is paper. Currently the technology is commercially available in polypropylene for injection molding or thermosetting products but other formulation with different based materials such as PE, PS, PLA and PHA for different processing is on-going.

Development of a Recycling Database for Material Re-Use and Landfill Tracking
Keith D. Weyer, October 2011

International Automotive Components Group has developed an internal database to track manufacturing scrap, material re-use, landfill and team action items among other things. The database enabled IAC to measure the amount of landfill resulting from various processes and then target specific areas. Regrind use was optimized to assure quality and best possible application. Via this database, landfill numbers, regrind use, and projects were graphically displayed to show the progress in each area. The database proved the adage ‘What is measured is managed and what is managed is improved” Examples of the capabilities of the database will be presented. The ability to track and measure also proved this database to be a very useful tool for management reporting. Based on these efforts, IAC was able to reduce their landfill from manufacturing by 36 million pounds in 2010.

Research and Application of Post Consumer Recycled Plastic in Electronic Products
James Drummond, October 2011

Over the years there has been an on again - off again relationship between consumer electronic products and post consumer recycled materials. The use of these materials is ultimately desired for the environmental benefit to our world, but also for the potential financial benefit of reclaiming a high value waste stream. To most outside the plastics or recycling industries, recycling plastics seems like a simple and obvious thing to do. The reality of it however is much more complicated. Ever-changing variables such as supply and demand, shifting waste streams, environmental regulations, and the price of oil, keep the sand shifting under the feet of those trying to succeed in this field. We will try to bring to light many of the issues and present some achievements along the way. With the learning of the past twenty years and new technological advancements it seems that this industry is beginning to turn a corner and achieve a stable, quality supply of post consumer recycled (PCR) materials. Coupling this improved supply with a more stable and increasing demand for Post consumer materials may make it possible for recycled engineering plastics to soon make their way into more consumer electronic products.

Methods for Protecting Polymer Recycle Chain and Intellectual Property of Advanced Polymers
Ben Eick, October 2011

The financial burden that accompanies the recycling of polymers when required by local laws and regulations will continue to grow in the next decade as more counterfeit products enter the marketplace. Manufacturers will begin spending more time and money attempting to recycle materials they did not produce than on actual production. In the same vein, companies that continue to innovate and produce specialty polymers are susceptible to counterfeiting. Counterfeiting leads to financial liability from product failures and losses in both customer confidence and revenue. When forced to recycle another manufacturer’s polymers, a company exposes themselves to the possibility of introducing inferior, harmful, and possibly dangerous polymers into their production facility and eventually into the hands of consumers. This exposes polymer producers and brand owners to liability if there are illnesses or product failures from recycling counterfeit materials. If inferior product is not detected prior to the time of recycling, a large amount of resources will be occupied separating good and bad polymers, increasing the likelihood that the cost of goods produced from recycled materials will be priced out of the market. Manufacturers and recyclers need tools that can be used to help them instantly identify their product from counterfeit materials. This paper will present several options to protect the polymer supply chain from cradle to grave to and back to cradle, methods to help reduce liability from inferior raw materials entering the marketplace, and protect intellectual property by ensuring advanced, specialized polymers are from legitimate sources.

Sustainability from Start to Finish: The Lifecycle Impacts of Plastic Packaging
Kelly Polich, October 2011

Sustainability is now a business fact, yet many of those asking for improvements to “sustainable packaging” lack the fundamental understanding needed to make the best possible business decisions. Scientific information is needed from production to end-of-life to determine what makes a package more “sustainable”. The 3 Rs (Reduce, Reuse, Recycle) are often the first steps for many individuals and businesses on their journey to becoming more sustainable, although new “R’s” such as Renew and Recovery are appearing. Using science-based criteria can help improve the understanding of how plastic packaging contributes to a sustainable society. Plastic packaging can prevent spoilage and damage to food and other products during distribution and storage. Plastics are light weight and frequently require less raw material and energy than other materials used for packaging. Plastics can be recycled and recovered at their end-of-life. Significant progress has also been made in the development of bio-plastics, but there continues to be confusion as to what bioplastics are and how to properly assess their environmental impact. Sustainability performance cannot be defined with a single attribute but must consider a product’s entire life cycle. This abstract/presentation will begin with examples demonstrating the sustainability benefits of plastic packaging, then define what bio-plastics are and why the diversity of bioplastics and their varying properties make it difficult to make simple, generic assessments as to whether plastics made from traditional or renewable feedstocks are “good” or “bad”, and conclude with a discussion of end-of-life options for packaging, including recycle-to-energy.

Marketing the Message of Sustainable Plastics Packaging
Mike Tolinski, October 2011

Recycled-content or bioresin packaging will require more than just the right technology and materials for sustained growth. Sustainable packaging expansion will also require increasing the number of informed, enthusiastic retailers and packaging users that are interested in being “greener.” This paper examines one way in which resin, packaging, and packaged-goods producers are attracting attention to the recycled-content, recyclability, or bio-basis of new plastics packaging. Messages on the packaging itself are used to make green claims and create branding, sometimes approaching (or overstepping) the boundaries of “greenwashing.” This paper considers the effectiveness of various messages, and, referencing proposed 2010 U.S. Federal “Green Guides,” considers the ways in which a clear, honest sustainability claim can be communicated to both informed and skeptical audiences.

Recent Advancements in Regrind Properties of Long-Glass Reinforced
Sue Kozora, October 2011

Two separate studies were completed to look at recovery of long glass fiber (average glass length = 10-15 mm) reinforced polypropylene. The LGF PP regrind in one case was molded at various percentages with virgin material and the other study involved property evaluation of 100% LGF PP regrind. The basis of the study was to evaluate use of typical grinders (grind size of 5/16”) and extruders to simulate conditions commonly found in most plastics molding facilities. Recommendations for addition of regrind to virgin materials are also presented based on evaluation of the properties obtained.

Material Separation and Recycling of Mixed and Shredded Plastics from used Household Appliances
Koji Hamano, October 2011

The separation and recycling technologies of shredded plastic mixture from waste household appliances have been developed. The separation technology was based on the characteristics of specific gravity, electrostatic charge and X-ray transparent of the plastics. The separated plastics were recycled by the technologies of contaminant reduction and material reformation. Furthermore, the first massive and high purity plastic recycling plant for polypropylene (PP), polystyrene (PS) and acrylonitrilebutadiene- styrene (ABS) in Japan has launched in 2010. This plant is able to separate the shredded plastic mixture up to 10,000 ton annually, and the recycled PP, PS and ABS have high purity more than 99%.

Shredder Technologies for Improving Resin Reclamation Processes and Economics
John Farney, October 2011

Reclaim extrusion lines rely on high quality reclaimed resin, which must come from balanced, high performance, and properly designed reclaim lines. These systems must be properly configured for the tasks at hand, and the implementation must allow for the complete business plan. Material volume is not the only data point upon which such a system must be judged on. If simple volume were the judgment, reclaimers, recyclers, and reprocessors would simply buy the largest and cheapest solutions available. Nothing could be further from the truth. Inadequate processing capabilities of the size reduction equipment can cause many problems, including the following: • Poor quality regrind • High levels of material degradation • Possible material contamination • Poor performance due to machine maintenance and overall condition • Poor material ingestion and processing • Improper operation due to machine design

Feeding and Blending Systems for Reclaim Extrusion
Keith Larson, October 2011

Extrusion lines rely on the feeding and blending systems, and other auxiliary equipment, that work with them. This equipment supplies the regrind, resin and additive materials, cools the process, maintains critical temperatures and can even monitor the entire operation. Inadequate process cooling, material handling or size reduction equipment can cause many problems, including the following: • Inadequate process cooling can reduce product output • Poor temperature control can cause product quality problems • Material can be contaminated if not handled and stored properly • The output of the line can be reduced, and even interrupted, if the material is not conveyed to the extruder at the required rate • Product quality will suffer if the material is not blended and metered into the extruder throat at the correct ratios • Excess dust caused by poor size reduction equipment can create processing problems

Drying and Crystallizing Systems for Reclaim Extrusion
Jeff Courter, October 2011

Many reclaim lines require moisture removal from the regrind material, and a PET reclaim extrusion line will not operate properly if the drying and crystallizing system cannot supply the material into the feed throat at the desired moisture content, temperature and intrinsic viscosity (I.V.). A proper drying and crystallizing system can be the difference between quality product and junk, so it is worthwhile to consider some features of the new equipment for your system: • Correct sizing and proper operation • New filter systems for increased performance • High-efficiency motors • New user-friendly PLC-based control systems • Heat recovery systems • Gas-fired options • Integration with extruder control system The following equipment is crucial to any reclaim extrusion line: • Hot air dryer (material dependent) • Crystallizer (material dependent) • Dust collection system • Dryer and hopper sized for the application • Loading system

Polyacrylonitrile/acrylamide-based carbon fibers prepared using solvent-free coagulation
Norhaniza Yusof , Ahmad Fauzi Ismail, September 2011

Polymer precursors of carbon fibers made using an environmentally friendly process show mechanical and thermal properties comparable to those prepared by conventional methods.

Mechanical & Impact Response of Recycled Thermoplastic & Flyash Foam Composites
Uday Vaidya, September 2011

The heavy transport industry has a significant amount of scrap generated in the manufacture of parts such as trailer bodies and structural components. Presently that scrap is landfilled. This paper presents the processing and resulting properties of recycled thermoplastic composites into useful products for reuse in transportation and related applications.

Sustainability with Automotive Carbon Fibre Composites: Reclaimed Carbon Fibre — cPBT Thermoplastic Composite
Jackie Rehkopf, September 2011

PowerPoint Presentation at Automotive Composites Conference and Exhibition

Fatigue Performance of SMC Composite Material Under Different Environmental Damage & Temperature Conditions
Justin Hunt, September 2011

The Automotive Composites Consortium (ACC) a partnership of Chrysler Group LLC Ford Motor Company General Motors Company and the U.S. Department of Energy conducts pre-competitive research on structural and semi-structural polymer composites to advance high strength lightweight solutions in automotive technology. An ACC focal project concerning the development of a structural composite underbody was established to provide methodologies and data for each ACC member company to implement lightweight cost-effective structural composites in high volume vehicles. This objective will be fulfilled through design analysis fabrication and testing of a structural composite underbody. A key design element required for implementation of the underbody structure is an understanding of the affects of environmental temperature and impact damage on the axial fatigue performance of the SMC composite material selected for the underbody structure fabrication. Research efforts have been made on fatigue performance of different type of composite materials (Ref. 1-5). In this study specimens were tested with no damage as well as two levels of impact damage. Environmental temperatures for the undamaged specimens were -40°C 21°C and 80°C. It was observed that fatigue life increased at low temperature conditions and decreased at high temperatures. The affect of temperature had a greater influence on fatigue life than the impact damage in this study. Temperature increases as measured at the specimen surfaces were observed as test frequency increased. Similar observations were made by Bellenger et al (Ref.6). The relationship between stress loading frequency and temperature will be investigated. Optical and scanning electron microscopy will be used to examine the crack locations and characteristics for specimens tested under different conditions.

Improved mechanical properties of a polylactide thermoplastic elastomer
Jie Ren , Qian Zhong, Qinfeng Wang, August 2011

A high-molecular-weight copolymer blend based on poly(lactic acid), possessing both amorphous and crystalline segments, features excellent mechanical performance and thermal properties.

Clay improves sustainability of polyvinyl chloride nanocomposites
Xiaoran Zheng , Marianne Gilbert, July 2011

Various processing methods are tested to examine the resulting properties of nanocomposites composed of clay and polyvinyl chloride.







spe2018logov4.png
Welcome Guest!   Login

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers, ISBN: 123-0-1234567-8-9, pp. 000-000.
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net