The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.
Important Update: SPE's Technical Library Is Evolving The SPE Technical Library will be retired on September 15, 2025, as we transition to Polymer Insights—a powerful, AI-driven platform designed to transform how plastics professionals access and apply technical knowledge. Polymer Insights delivers answers and insights to your questions that are sourced entirely from SPE-curated content, including decades of peer-reviewed research, technical papers, and industry expertise. This new tool goes beyond search—providing intelligent, contextual results tailored specifically to you.
Open Access Preview: July 17–20, 2025
Be among the first to explore! From Thursday, July 17 through Sunday, July 20, Polymer Insights is open to all — no login required. Try it at www.polymerinsights.ai.
After July 20: Premium Members Only!
Don’t let this level of access end with the free trial!Starting on Monday, July 21, Polymer Insights will be exclusive to SPE Premium Members. Join SPE as a Premium member to keep unlimited access to this revolutionary tool!
Various topics related to sustainability in plastics, including bio-related, environmental issues, green, recycling, renewal, re-use and sustainability.
This paper provides insights into a newly launched portfolio of environmentally progressive products. These molding compositions are based on a polybutylene terephthalate (PBT) that is made by chemical regeneration of post consumer recycle polyethylene terephthalate (PCR PET) and converted into PBT. These products can then be used in a variety of automotive and consumer applications. These new products' manufacturing processes require less energy and non-renewable fossil fuels as compared to the manufacturing processes of conventional fossil fuel based materials. We will present the comparison of properties results of molding compositions using this new technology and traditional PBT will be presented.
Three different biodegradable copolyesters with increased green content (starting from 31 %) made from recycled post consumer poly(ethylene terephthalate) (PET) were evaluated in comparison to commercial poly(butylene terephthalate-co-adipate) (PBAT) in terms of thermal, rheology, and physical properties. The melting temperature of the resins is lower compared to commercial PBAT due to the presence of isophthalate and traces of diethylene glycol (DEG) linkages from PET. The melt flow values are 2.5 times higher than those of commercial PBAT, which has extensive branching. New resins show low crystallinity, high flexibility, and no break at maximum elongation compared to commercial PBAT.
Polymethylmethacrylate material (PMMA) is used in several automotive exterior applications such as exterior appliques and lighting lenses. There are different grades of PMMA that are commonly used for automotive exterior applications. This paper examines the chemical resistance of different grades of PMMA that are commonly used in automotive exterior applications to automotive windshield washer fluid under different strains. The exterior automotive parts are subjected to harsh environments. The parts are exposed to a range of environmental elements such as chemicals, sunlight, rain, snow, cold and hot temperatures. This study focuses on the chemical exposure of PMMA to windshield washer fluid.
Filling polymers with wheat straw can be environmentally responsible and reduce cost. Nowadays most composites with natural fibers are processed by compression molding. This study examined the feasibility of manufacturing wheat-straw and high-density polyethylene composites by injection molding. MFI and thermal analysis of composites with different wheat straw contents were characterized. Mechanical properties of injection molded composites were measured. It has been found the melt points of all composites were about 135C. The fluidity, tensile and impact strengthes of the composites decreased while the wheat straw content increased. However, the flexural strength increased slightly with the increase in wheat-straw content.
Cybele Lotti, Rogerio M. Moreno, Satinath Bhattacharya, Luiz H. Mattoso, May 2011
Natural rubber (NR) is a biopolymer whose properties depend on the structure of the 1,4-cis polyisoprene chains, non-rubber constituents, environmental conditions. NR has been characterized by traditional methods, but these cannot effectively account for clone's differences. The aim of this work is to use extensional rheology to characterize and differentiate NR samples as for clone type and season of the year. Three IAC 300 series and RRIM 600 clones of Hevea brasiliensis tapped between October 2006 and August 2008 were investigated. The extensional viscosity varied considerably and was more sensitive than any other traditional property, being fundamental for monitoring purposes.
Because of the growing environmental concerns with chrome plating, finishers have been requesting greener alternatives. UV coatings for multi-purpose decoration have been used for several years. However, these coatings do not have the required durability to replace chrome plating. Red Spot has recently developed and launched a UV-curable topcoat for PVD that provides performance characteristics needed to pass the OEMs toughest requirements. This paper addresses the current chrome plating process, challenges associated with developing durable coatings for PVD, an explanation of material application, a list of advantages that the UV/PVD decorative process encompasses, and targeted end applications.
This paper covers a failure analysis of a cross-linked polyethylene (PEX) hot and cold water plumbing system that utilized plastic insert fittings that were fastened with stainless steel clamp rings. The failed fittings exhibited features that led several different investigators to associate the failures with fatigue and slow crack growth. Our examination of the fractures indicated that the failures were due to high stress that caused crazing and subsequent fast fracture of the fittings. Environmental Stress Cracking (ESC) may also have been involved as a contributor to the failures.
George Jacob, Nikhil, Ha Pham, Theophanous Theophanis, May 2011
Epoxy composites offer high performance and proven reliability in many demanding applications including components for aerospace and wind turbine blades. While in operation, these components are subjected to repeated cyclic loadings that result in material fatigue. For example, wind turbine blades are subjected to significant stresses from their movement, wind and other environmental factors such as temperature cycling and humidity. The expected life of a composite structure is based partially on the resistance of the materials utilized to fatigue failures.
Indah Widiastuti, Igor Sbarski, Syed Masood, May 2011
This paper evaluates the potential use of biodegradable polymer for fuel system components by considering operating conditions. Organic liquid diffusion into biodegradable polymer was observed by fuel immersion at various temperatures ranging from 5 to 50§C until the equilibrium condition was achieved. During the immersion time, mass uptake and length swelling were recorded periodically. The data were plotted for diffusion coefficient calculation at each temperature. Changes in mechanical properties were also investigated through tensile, flexural and impact testing. The results resemble the impact of gasoline absorption on biodegradable polymers when used for the under-hood components of a vehicle.
Green polymers are being brought to market in order to capitalize on a perceived demand from environmentally conscious consumers. Plastics industry processors and users need to know, however, just what are the particular characteristics of different green polymers and which specific end use demands they fulfill? Are they broad-based products or a series of niche specialties? This paper will address the relative characteristics of current green polymers from point of view of end use market needs, and how best to meet these needs, in terms of economics, performance, and utility.
The ability to be recycled is an important attribute for many plastics. By melting and reprocessing thermoplastics for re-use the carbon footprint can typically be reduced compared to the use of virgin materials. The benefits of incorporating recycle content into new and existing applications, however, must be tempered by the reality that recycled plastics may not have the same performance as virgin materials due to either 1) degradation by weathering/aging, 2) contamination, or 3) thermo-mechanical degradation from re-processing. To minimize these effects, it is important to understand the benefits of utilizing impact modifiers and compatibilizers.
Anson Wong, Lun Howe Mark, Mohammad Hasan, Chul B. Park, May 2011
Carbon dioxide (CO2) and nitrogen (N2) are environmental-friendly blowing agents, but they pose various technical challenges to plastic foaming industries in producing high quality foams with uniform cell morphologies. Previous studies demonstrated improved foam morphologies when CO2/N2 blends were used, but the fundamental mechanisms of such foaming processes are not thoroughly understood. This study examines the foaming behavior of polystyrene (PS) blown with CO2/N2 blends by observing their foaming processes in situ.
John Kissick, Gerry McNally, Alan Clarke, Paul Hanna, May 2011
Presented in this paper are the preliminary results from an experimental study on the use of rock, fines* which is mainly silicon dioxide as a filler in the rotationally moulded polyethylene products. The rock fines are a waste product from the Quarrying industry. Additive levels of up to 40% by weight were studied. Samples were made with and without a compatibilizer. It was found that acceptable parts were produced at these levels. The mechanical properties of the parts were tested and showed an increase in tensile modulus but a decrease in impact properties.
Burak Bekisli, John Rodgers, Qi Li, John Coulter, May 2011
The wide variety of biomedical applications employing biodegradable polymers requires a similarly wide range of biodegradation properties. In this study, a dynamic melt manipulation technique in injection molding has been investigated as a low cost, high volume manufacturing alternative to respond these requirements. The technique utilizes an additional oscillatory motion during injection molding to induce molecular alignment of polymer molecules in the final product. Preliminary experimental results have indicated that biodegradation process is dependent on these orientation levels and therefore polymeric medical devices with different degradation characteristics can be obtained simply by changing the manufacturing parameters.
Yunior Hioe, Jesse Guerra, Dante Guerra, Siva Movva, L. James Lee, Jose Castro, May 2011
One of the most environmentally friendly energy generation methods is wind power. In order to compete favorably with the cost of traditional energy generation methods, the wingspan needs to increase from current dimensions. For this to occur, taking advantage of new material developments in nano-reinforced composites is essential. The use nanoparticles have shown improvement in mechanical properties of FRPC. Understanding the manufacturability of these processes is critical, especially during VARTM. Understanding the factors affecting the flow through porous media and the inherent material properties, such as permeability and viscosity, of these nano-enhanced FPRC was the objective herein.
Jonathan Buckley, Amelia Halliday, Antonio Lewis, Dax Druminski, Satya Shivkumar, May 2011
The properties of six biodegradable commercial plastic bags, including BioBag, Flushdoggy, Green Genius, Oxobiodegradable, Rascodog, and World Centric, were examined. Most of the bags exhibited mechanical properties similar to traditional bags. One bag that had extensively higher properties was the Flushdoggy bag, which is based on PVA. All the bags generally start to degrade thermally at around 400C. Exposure to UV light did not have much of an effect on tensile properties. UV radiation, moisture, and weathering all had little effect on thermal degradation. Oxo-biodegrable and Flushdoggy became especially brittle after accelerated aging, although Flushdoggy still exhibited strong tensile properties.
Tianhua Ding, Rama Konduri, Rodney Fonseca, Chris Van der Weele, Shun Wan, May 2011
New family of ENH flame retardant PBT (polybutylene terephthalate) and PBT/PC(polycarbonate) thermoplastic resins developed is aimed at helping electrical/electronics (E/E) manufacturers and suppliers comply with regulations restricting use and disposal of hazardous substances. The non-chlorinated, non-brominated FR PBT and PBT/PC products deliver similar mechanical, physical, thermal and flame retardant performance compared with their brominated FR based counterparts. Some of those resin properties will be discussed in this publication.
Matthew Rowe, Ersan Eylier, Keisha Walters, May 2011
Two renewable copolymers, poly(trimethylene malonate) (PTM) and poly(trimethylene itaconate) (PTI), have been produced with ester bonds incorporated into the polymer backbone to facilitate hydrolytic and/or enzymatic degradation. A hydrolytic degradation study of these renewable polymers in aqueous solutions adjusted to pH values is described. Final weight loss varied from 20 to 37 wt% for PTM and from 7 to 21 wt% for PTI as a function of aging time and initial solution pH. Degraded samples were characterized by FTIR, GPC, DSC, and TGA. PTI showed a slower degradation rate than PTM.
To reduce manufacturing costs and address environmental issues, coatings free Mold-In-Color plastics are now replacing coated plastics. This paper will explore the physical property retention / weathering performance of various Mold-In-Color plastics used for exterior trim. Exposed specimens are analyzed for their change in physical properties then analyzed for change in surface chemistry via infrared spectroscopy and surface topography. It is concluded that some plastics containing styrene experience a change in physical properties and surface chemistry upon UV expose while other materials like PMMA acrylic retain their original performance.
Highly expanded polyolefin foam was made flame-retardant with the use of an environmentally friendly phosphorous flame retardant. An aqueous solution of a derivative of carboxylic acid of phenylphosphonic acid was externally applied to already-made partially-open-celled foam to achieve desired flame-retardant foam. An effective flame retardant level as low as 0.1 pars per one hundred parts of resin provided self-extinguishing foam. The compound could also be directly fed in the extrusion process. This finding opens an avenue to achieving a low-cost thermal insulation material from polypropylene.
Kim McLoughlin Senior Research Engineer, Global Materials Science Braskem
A Resin Supplier’s Perspective on Partnerships for the Circular Economy
About the Speaker
Kim drives technology programs at Braskem to develop advanced polyolefins with improved recyclability and sustainability. As Principal Investigator on a REMADE-funded collaboration, Kim leads a diverse industry-academic team that is developing a process to recycle elastomers as secondary feedstock. Kim has a PhD in Chemical Engineering from Cornell. She is an inventor on more than 25 patents and applications for novel polyolefin technologies. Kim is on the Board of Directors of SPE’s Thermoplastic Materials & Foams Division, where she has served as Education Chair and Councilor.
A Resin Supplier’s Perspective on Partnerships for the Circular Economy
About the Speaker
Gamini has a BS and PhD from Purdue University in Materials Engineering and Sustainability. He joined Penn State as a Post Doctorate Scholar in 2020 prior to his professorship appointment. He works closely with PA plastics manufacturers to implement sustainability programs in their plants.
A Resin Supplier’s Perspective on Partnerships for the Circular Economy
About the Speaker
Tom Giovannetti holds a Degree in Mechanical Engineering from The University of Tulsa and for the last 26 years has worked for Chevron Phillips Chemical Company. Tom started his plastics career by designing various injection molded products for the chemical industry including explosion proof plugs and receptacles, panel boards and detonation arrestors for 24 inch pipelines. Tom also holds a patent for design of a polyphenylene sulfide sleeve in a nylon coolant cross-over of an air intake manifold and is a Certified Plastic Technologist through the Society of Plastic Engineers. Tom serves on the Oklahoma Section Board as Councilor, is also the past president of the local Oklahoma SPE Section, and as well serves on the SPE Injection Molding Division board.
Joseph Lawrence, Ph.D. Senior Director and Research Professor University of Toledo
A Resin Supplier’s Perspective on Partnerships for the Circular Economy
About the Speaker
Dr. Joseph Lawrence is a Research Professor and Senior Director of the Polymer Institute and the Center for Materials and Sensor Characterization at the University of Toledo. He is a Chemical Engineer by training and after working in the process industry, he has been engaged in polymers and composites research for 18+ years. In the Polymer Institute he leads research on renewably sourced polymers, plastics recycling, and additive manufacturing. He is also the lead investigator of the Polyesters and Barrier Materials Research Consortium funded by industry. Dr. Lawrence has advised 20 graduate students, mentored 8 staff scientists and several undergraduate students. He is a peer reviewer in several journals, has authored 30+ peer-reviewed publications and serves on the board of the Injection Molding Division of SPE.
Matt Hammernik Northeast Account Manager Hasco America
A Resin Supplier’s Perspective on Partnerships for the Circular Economy
About the Speaker
Matt Hammernik serves as Hasco America’s Northeast Area Account Manager covering the states Michigan, Ohio, Indiana, and Kentucky. He started with Hasco America at the beginning of March 2022. Matt started in the Injection Mold Industry roughly 10 years ago as an estimator quoting injection mold base steel, components and machining. He advanced into outside sales and has been serving molders, mold builders and mold makers for about 7 years.
84 countries and 85.6k+ stakeholders strong, SPE
unites
plastics professionals worldwide – helping them succeed and strengthening their skills
through
networking, events, training, and knowledge sharing.
No matter where you work in the plastics industry
value
chain-whether you're a scientist, engineer, technical personnel or a senior executive-nor
what your
background is, education, gender, culture or age-we are here to serve you.
Our members needs are our passion. We work hard so
that we
can ensure that everyone has the tools necessary to meet her or his personal & professional
goals.
Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:
Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers, ISBN: 123-0-1234567-8-9, pp. 000-000.
Available: www.4spe.org.
Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.