The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.
The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?
Various topics related to sustainability in plastics, including bio-related, environmental issues, green, recycling, renewal, re-use and sustainability.
This paper presents experimental results on the blends of polypropylene (PP) with functional polyolefin elastomer (FPOE) for recycling of xerographic toners. All experiments were carried out in a co-rotated reactive twin screw extruder. The investigation of the mechanical properties and morphology for different blends consist of PP, xerographic black toners and functional POE (FPOE) through reactive compounding. It is of interest to note that the notched Izod impact resistance of the blends with functional POE (FPOE) is significantly improved relative to physical blends. However, tensile strength at yield (?y) and modulus of elasticity (E) of the reactive blends are reduced. The reason why the impact properties should be so is clearly shown by the stress-strain behavior of the blends. Morphology of the cryogenic fracture surfaces of the blends was studied through scanning electron microscopy (SEM). The results of morphological studies indicated that not only the domain size of the phase of black toners could be reduced but also the interfacial adhesion could be enhanced through proper functional POE (FPOE). The phase morphology of the blends also illustrated that better dispersion of black toners could be obtained through using FPOE whereas serious agglomeration of black toners was found in the physical blends. It is elucidated that the functional POE could be an excellent candidate of compatibilizer for recycling xerographic black toners.
What if the electronics industry used specially designed photoresists that could be deposited using a spin coating process based upon liquid CO2 instead of organic solvents? Also what if this industry didn’t have to use hundreds of millions of gallons of water per day to remove sub-micron particles during the manufacture of integrated circuits and flat panel displays? Imagine polymerizing monomers in a continuous stirred tank reactor with the resulting polymers instantly dry, avoiding the trillions of BTUs needed every year to dry commercial polymers made in aqueous reaction media. Imagine an automotive industry that doesn’t expose its employees to toxic chlorinated solvents during metal degreasing processes. Imagine a textile industry that doesn’t need to use 100 lbs of water for every 1 lb of yarn that was dyed. Imagine local dry cleaners that don’t need to clean garments in perchloroethylene and local businesses that don’t need to pay exorbitant, newly enacted taxes on solvent use or carry newly mandated liability insurance policies. What if the demands on municipal water systems and municipal waste water systems could be dramatically reduced by changes in manufacturing technology? Imagine an educational environment where students become grounded in the fundamentals of their core disciplines, are exposed to cutting-edge, multidisciplinary science, and can experience the satisfaction and excitement that comes from doing research that makes a difference to society. The discussion will focus on the latest developments from the NSF Science & Technology Center for Environmentally Responsible Solvents and Processes. In particular, the detailed synthesis and CO2 solution properties of fluorinated and siloxanebased homopolymers and block copolymers will be discussed. The utility of such macromolecules will also be demonstrated for use in coatings (photoresists and textiles), separations, stabilizers for polymerizations, and scaffolds for catalysis. Particular attention w
This paper reports the results of an investigation of the effects of purity level and nature of impurities on the properties of recycled polycarbonate and recycled acrylonitrile-butadiene-styrene polymers blended with the corresponding virgin resins. The relevant thermal, mechanical and flow properties were measured. It is concluded that properties of recycled polymers depend not only on the amount of impurity present but also on the kind of impurities and contaminants that are present. The latter factor even plays an important part in relation to compatibility of polymers. However, polymer melt rheology seems less sensitive to impurities than some mechanical properties such as impact strength. More than 99% purity is needed for recycling these polymers back into their original, high-value applications.
Failure analysis (FA) of products and materials always requires careful observation of the general circumstances involved. The product failure analyst never overlooks external causes or environmental effects. All FA also requires a healthy dose of common sense and a 'Sherlock Holmes' investigatory sense. However, specialized material and product tests are also essential components of successful FA including: material mechanical properties, tests for composition and uniformity, residual stress tests, tests for contamination, identification and quantification of residual solvents, microstructural examination, and many more. An overview of general FA techniques will be presented, followed by specific examples of plastic FA. These specific examples will be discussed in detail, with special emphasis on the key findings derived from specialized laboratory testing. Examples will include plastic piping systems, consumer products, industrial equipment, and sporting equipment. Techniques discussed will include residual solvent identification by GC/MS, various spectroscopic techniques, optical and electron microscopy, thermal analysis, and mechanical properties testing.
Paul Miller, Edward Kosior, Igor Sbarski, Syed Masood, Pio Iovenitti, May 2001
This paper investigates the melting point and crystallinity behaviour of blends of recycled milk bottle HDPE with injection moulding and film blowing grade high density polyethylene (HDPE), linear low density polyethylene (LLDPE) and low density polyethylene (LDPE) as part of a larger investigation into blends of recycled HDPE and virgin polyolefins. The variation in melting points and crystallinity levels for blends of recycled HDPE with either HDPE or LLDPE were linear with composition, and displayed only one melting point, while recycled HDPE with LDPE displayed separate melting points for each compositional component.
Because of their previous thermal and shear history, recycled plastic materials have properties that are significantly inferior to those of their unrecycled counterparts. Thus, the applications of these materials are limited. With the aid of Vibration-Assisted Injection Molding (VAIM) technology, during the present study the properties of products made from recycled polymeric materials were improved. In this paper, the property enhancements realized with recycled polystyrene are presented compared with those obtained through the convention injection molding of virgin material. Also, a potential theoretical basis for the phenomena is discussed.
Q. Xiang, M. Xanthos, S. Mitra, S.H. Patel, May 2001
Polypropylene, as a commodity recyclable thermoplastic, is studied in this research to evaluate the potential environmental impact resulting from volatile organic compounds (VOCs) emitted during multiple reprocessing. Unstabilized commercial polypropylene (PP) grade was processed several times by injection molding. Samples were examined after each cycle for total VOCs emissions with a flame ionization detector (FID) and cumulative VOCs emissions were obtained after each processing step. Corresponding structural changes were investigated with Fourier Transform Infrared (FTIR) Spectroscopy and results were correlated with rheological data that showed decreasing viscosity particularly after the 7th processing cycle.
Waste management is gradually becoming a priority within an integrated approach to nature conservation. Croatia has taken a number of good steps during the recent years. The first life-cycle and economy analyses in Croatia were made for managing of glass waste in 1997, but no serious study of plastic waste was made until recently. Among all types of plastic waste, only PET-bottles are collected in Zagreb (within the OHO system - Croatian Recycling System), so it was logical to make the first life-cycle analysis of PET-bottle. The results have shown the evaluation of PET-bottles' impact on the environment and the critical points" of PET-recycling were pointed out."
Jennifer K. Lynch, Thomas J. Nosker, Richard W. Renfree, Prabhat Krishnaswamy, Robert Francini, May 2001
Commingled recycled plastic lumber (RPL) decking was exposed to the environment for eleven years. The weathering effect is examined by performing mechanical property tests on the full size deck boards before and after the exposure. Flexural tests on the weathered deck boards were conducted with the exposed side and the unexposed side tested in tension. The flexural properties after weathering are compared to the original flexural properties. These data show the effect of weathering on recycled high-density polyethylene based RPL. A life cycle cost analysis (LCCA) is also presented to compare the cost of a wood deck versus an all RPL deck. The purchase, maintenance, and disposal costs are included.
Rich Farrell, Steve Goodwin, Carl Wirsen, Jeanne Lucciarini, Mathew Martinez, Jo Ann Ratto, May 2000
Nanocomposites containing biodegradable polymers and clays were investigated to improve biodegradable properties. Polycaprolactone (PCL) (83,000 and 43,000 g/mol molecular weight) was mixed with additions of either 2 or 5% of synthetically modified montmorillonite clay. A twin screw extruder was used to produce the pellets. The pellets were then co-extruded with multilayering technology to produce 15-inch wide films from a 256 and 1024 layer die multiplier configuration. This study focuses on the biodegradation studies in compost, soil, and marine environment with results showing improved biodegradation rates in selective nanocomposites and environments.
Recycled polymers are currently being used in the design of commercial products for the maritime structure industry. Marine pilings, pier fenders, and pier support elements are just some of the products being designed with recycled polymers. Understanding the effect of submersion in salt and fresh water on the mechanical properties of the material used in these products is important. This study will examine the tensile creep behavior of recycled HDPE in ocean water, fresh water from Lake Erie, distilled water, and air. A specially designed apparatus for aqueous creep testing was utilized to obtain the data for this study.
The recycling of post industrial ABS and PMMA was investigated. A material compound consisting of 100% post industrial (PI) recycled ABS and multicolored acrylic (PMMA) scrap from a manufacturing plants was blended and extruded. Test samples were injection molded and the test results were correlated to virgin material. Additionally, the material was used in injection molding of rear lamp housings in black and gray colors. The test results and economics are promising.
The manufacturing waste generated during the production of vinyl floor tiles is typically sent to landfills, rather than recycled, because of a lack of reuse options for this material. This waste is typically PVC loaded with approximately 80% limestone. The goals of this research are to characterize this material to determine the feasibility of reprocessing it and to measure the mechanical properties of the processed material. This study will also attempt to suggest an injection molding or extrusion application for the mixture.
Space Structures that require light-weight materials with sufficiently high strength and environmental endurance have been in increasing demand since the early 1980's. However, the biaxial behavior of these structural materials under pressurized loading, is rarely found in the literature. An experimental investigation was conducted to develop a test method and hardware to characterize the biaxial behavior of a fabric-film laminate intended for use as a structural envelope for large balloons. The material tested is a composite laminate of three layers. The three layers are: polyester-based woven fabric, 6 microns film of polyester (Mylar type A) and 6 microns film of linear low density polyethylene (LLDPE). The laminate structure provides high strength to weight ratio. In this study, a test technique has been developed to measure the biaxial response of the material to known stress ratios. The information gained from the test can be manipulated to estimate Poisson's ratio and the development of a material structural model.
R.L. Shogren, J.W. Lawton, W.M. Doane, J.L. Willett, May 2000
Poly(hydroxyester-ethers) (PHEE) were added to a variety of thermoplastic starch composites in order to improve the mechanical and water-resistant properties of these systems. Thin film coatings of PHEE's were found to adhere well to starch sheets and foams and provided resistance to cold water over short periods of time (hours-days). Adhesion was decreased by high water or glycerol contents in the starch and was increased by addition of partially hydrolysed polyvinyl alcohol. Extruded starch foam peanuts containing 5-20% PHEE were found to have a thin surface layer consisting mainly of PHEE. This probably explains, at least in part, why the starch/PHEE foams have a higher expansion ratio, greater water resistance and reduced friability compared to foams made from starch alone.
Andrea Komarek, John Uhlrich, Pete Sherlock, Christopher C. Ibeh, May 2000
An on-going Pittsburg State University project focuses on the development of biodegradable polymer blends that can be used for low temperature durable and cost-effective bioresorbable castration clips for the farm industry. Clip materials must be non-food contaminants while being functional at the below zero degree polybutylene succinate and polybutylene/adipate copolymer were formulated into injection moldable blends that can withstand down to -20°C (negative 20 degrees Centigrade)."" weather of the North American farm belt winter months. Using the glass transition temperature (Tg) and solubility parameter (?) criteria pre-selected biodegradable materials polycaprolactone
Philip Canale, Sanjay Mehta, Stephen McCarthy, May 2000
Biodegradable polymers are used in medical applications, among many reasons, because of their history of biocompatibility. In this report an attempt has been made to establish the structure created by reactive processing of poly (caprolactone) and Easter 14766 with dicumyl peroxide (DCP). Results showed that PCL quantitatively formed tetra-functional branches while the Easter 14766 formed a combination of tri and tetra-functional branch points. The Easter 14766 was also shown to be more reactive than the PCL, with half as much DCP being required to achieve equivalent amounts of branching. Both Easter 14766 and PCL displayed typical branching behavior with increase in melt elasticity and zero shear viscosity. Easter 14766 showed a little improvement in mechanical properties. However, studies showed PCL to be insensitive to branching.
Wei Liu, Jayant Kumar, Sukant Tripathy, Lynne Samuelson, May 2000
A new biological strategy has been developed to synthesize water-soluble conducting polyaniline. In this approach, anilines are polymerized by the enzyme horse-radish peroxidase (HRP) catalysis in aqueous buffer solution at pH 4.3 in the presence of a template. Strong acid polyelectrolytes such as polystyrene sulfonate (SPS) and the aqueous micelles formed by strong acid surfactants such as dodecylbenzenesulfonic acid (SDBS) are favor-able templates to form nano-scale reactors for the growth of conducting polyaniline. The properties of this enzymatically synthesized polyaniline are consistent with the polyaniline that is traditionally prepared via either chemical or electrochemical procedures. This biological approach offers unsurpassed ease of synthesis, processability, stability (electrical and chemical), and environmental compatibility.
This paper presents experimental results on the blends of metallocene polyethylenes (mPE) for recycling of xerographic toners by reactive extrusion. The experiments were carried out in a reactive twin screw extruder. The evaluation of the mechanical properties and morphology for different blend consist of black xerographic toners with mPE with and without compatibilization by reactive processing. It is rather surprised that the impact strength property is synergistic behavior. The impact strength and the modulus of elasticity of the blends using compatibilizer can be significantly improved. Morphology studies employed scanning electron microscopy (SEM) show that not only the domain size of the phase of black toner can be reduced but also the interfacial adhesion can be enhanced by proper compatibilizeation. Phase morphology and domain size indicate that efficient dispersion was obtained for the compatibilized system whereas the phase of black toner was agglomerated in the interfaces without compatibilization.
Lynnette M. Dehnke, Jose M. Castro, Ming Li, L. James Lee, May 2000
Current processes used to manufacture electronic pre-pregs and laminates use solvent based systems. Solvents are environmentally unfriendly and add no value to the final product. We are developing a new solventless process, based on the concept of continuous Resin Transfer Molding or Injection Pultrusion. The first step in designing the process is to select a suitable chemical system. The viscosity of the system should be such that it allows proper impregnation at a temperature at which not much reaction takes place. To predict the required pulling force, the friction at the wall as the material solidifies needs to be truly understood. A potential resin system has been identified and its chemo-rheology and structure formation will be discussed.
84 countries and 60k+ stakeholders strong, SPE
unites
plastics professionals worldwide – helping them succeed and strengthening their skills
through
networking, events, training, and knowledge sharing.
No matter where you work in the plastics industry
value
chain-whether you're a scientist, engineer, technical personnel or a senior executive-nor
what your
background is, education, gender, culture or age-we are here to serve you.
Our members needs are our passion. We work hard so
that we
can ensure that everyone has the tools necessary to meet her or his personal & professional
goals.
Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:
Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.
Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.