The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.
The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?
Various topics related to sustainability in plastics, including bio-related, environmental issues, green, recycling, renewal, re-use and sustainability.
Suneel Vadlamudi, Jose M. Castro, Elliott J. Straus, May 2000
In-mold coating (IMC) is being successfully used as a primer IMC to cover surface defects such as porosity and sinks, for Sheet Molding Compound (SMC) compression molded automotive and truck exterior body panels. A new class of coating materials is being developed [1, 2] for thermoplastic substrates. The potential benefit of using In-mold coating (IMC) as a topcoat for thermoplastics is large. Painting is a very costly and a non-environmentally friendly operation. Key to optimizing the IMC process is to be able to predict the fill pattern, so as to locate the injection nozzle or nozzles, in locations where the potential for trapping air is minimized [3, 4]. CAD software is available [4] to predict the flow of IMC, when the substrate compressibility can be neglected. However, for SMC parts with large regions parallel to the mold closing direction (most truck parts) and in particular for thermoplastic parts, the substrate compressibility cannot be neglected. Our long-term research aims to develop a simulation package that predicts the flow of IMC when the substrate compressibility cannot be neglected. In this paper, a simple model to predict the pressures needed to inject the coating as a function of the substrate compressibility is presented. We will also show how the clamping force needed to prevent the mold deflection can be estimated.
P.S. Walia, J.W. Lawton, R.L. Shogren, F.C. Felker, May 2000
The effect of moisture level during processing on the mechanical properties of biodegradable blends of thermoplastic starch and poly (hydroxy ester ether) (PHEE) was studied. The morphology of the blends changed with the moisture content of starch. The dispersed phase was significantly deformed under high moisture conditions, leading to fibrillar and laminar types of morphologies at 50-80% starch level. A low moisture level produced a more dispersed morphology. Improved tensile properties were observed for the blends processed at high moisture levels due to the presence of elongated morphologies.
Ana C. Eulálio, Numa J. Capiati, Silvia E. Barbosa, May 2000
The recovery and recycling with profit of municipal plastic waste (MPW) is still an unsolved problem. Only in the developed countries a small portion of their MPW is used with profit. The major part of the plastic residue is disposed of landfilling. This work analyses the existing methodologies for recycling and assesses their potential application to MPW. Also, a comparative study of incineration, in terms of energy saving and contamination risks, is performed. The energy required for recycling and the energy obtained for controlled incineration is calculated, and the maximum energy opportunity is obtained. On the other hand, the energy needed to recycle either commingled or separated plastic residues was compared, taking into account the final properties obtained and the compatibilization step.
The main applications of near-infrared spectroscopy relating to polymers are quality control, monitoring of textile fibers, remote identification/classification of polymeric materials (recycling), monitoring of polymer melts for additive and/or (co)polymer composition, and polymerization monitoring (of polyolefins, epoxies, nitrogen-containing polymers). Diffuse reflectance and transmission, transreflectance and reflectance modes are being used. Examples of the aforementioned applicational areas will be given with the main emphasis on the on-line (multicomponent) additive analysis in the polymer melt by means of near-infrared spectroscopy.
Styrenic block copolymers (SBC's) are increasingly being used as compatibilizers (interfacial agents) in polystyrene and polyolefin blends with either virgin and/ or recycled resins. Many technical articles and patents on blends of styrenic and olefinic polymers indicate that styrenic block copolymers and more specifically styrene-butadiene- styrene copolymers function as compatibilizers. This paper reports the effectiveness of new block copolymers to compatibilize styrenics and polyolefins. In addition, a comparison of physical properties of blends using new block copolymers is made to those currently used in the industry.
Within the scope of Rapid Tooling the IKV is working on the optimization of Soft Tooling techniques and on the development of Hard Tooling techniques. The aim is to get molds with a high mechanical strength and series-like cooling conditions. For that purpose the resin casting process is improved taking advantage of the sedimentation of a steel powder filler. Furthermore the metal injection molding (MIM) is analyzed with respect to its suitability for manufacturing steel molds or prototypes. The mold used in the MIM process is made by stereolithography. The results show the possibility to get steel powder contents as high as the bulk density with the resin casting. It is also feasible to manufacture green parts of steel molds or prototypes with MIM.
A new thermally conductive compound available in a variety of crystalline thermoplastic matrices can be used to improve material management in a variety of industrial and consumer applications, including heat sinks, thermostats, heat exchangers, and as radiant heating coils. Replacing heavy metal shrouds and non-recyclable metallized plastics, the new compounds are non-corrosive, can be processed on all conventional thermoplastic equipment, and can even be melt reprocessed for in-plant recycling. A variant on the technology also produces compounds that are simultaneously thermally and electrically conductive.
Thomas Schubert, Gottfried W. Ehrenstein, May 2000
Unknown properties of recycles are the problem in the field of recycling thermoplastics. The off-line determination of selected properties (basicpolymer, colour and mechanical properties) is not sufficient to qualify recyclates. Important for the characterization is an almost complete knowledge of the material properties when producing recyclates that are supposed to be competitive as construction materials. Therefore the implementation of tools for the detection and assurance of material properties on-line during extrusion is a promising conception. This presentation shows and discusses the basic ideas of on-line property determination, the achieved results of material determination, and the resulting process control.
This paper is about upgrading tooling that has been built many years ago, or simply to make mouldings to suit our type of manufacturing operation. When these tools were built the techniques and technology used was the latest available to the polymer technologist designer, mould shop and toolmaker. Using tooling technologies as the starting point, I have added management, and more so Leader techniques to show how production can be changed and opportunities gained, by modernising; towards increasing production, saving money, material, and bringing about attitudinal changes. This paper will concentrate on the following topics, and show details where this revisiting process has changed tools and people to make them more motivated about competition, which will result in profitable, faster cycling and be better suited to today's fast operational needs.
M. Xanthos, R. Dhavalikar, V. Tan, S.K. Dey, U. Yilmazer, May 2000
PET foams of variable densities, (1 g/cc to 0.2 g/cc), based on virgin and recycled material were produced by extrusion with physical or chemical blowing agents and evaluated as low density core in sandwich panels having M/F impregnated paper or flame retardant mineral reinforced PET as skin faces. Flexural and shear stiffness of the laminates were determined by variable span three point bending. Panels were also tested for thermal and moisture stability and compared with competitive sandwich constructions based on PVC foam, flake board, particleboard and plywood. Potential applications of the PET based laminates in building and construction are presented.
Claudia M.C. Bonelli, John M. Pochan, T.H. Mourey, Eloisa B. Mano, Charles L. Beatty, May 2000
The incompatibility of polypropylene (PP) and high density polyethylene (HDPE) is a source of industrial problems for recycling post-consumer polyolefins. Blends of PP and HDPE with peroxide and 3 vector fluid additives have been prepared in a co-rotating reactive twin-screw extruder. Compatibilization has been examined by stress-strain tests, impact tests and scanning electron microscopy (SEM). Molecular weight of the blends has been evaluated by gel permeation chromatography (GPC). An increase in elongation at break and impact resistance of some reactive blends compared to the mechanical blend was observed, with some links between the phases, as revealed by SEM.
Post-consumer high-density polyethylene is commonly used to make lumber products, but such products are substantially less stiff than wood lumber. Using a two factor full factorial experimental design, the effects on tensile, flexural and impact properties of adding ground recycled fiberglass composite in combination with wood flour to high density polyethylene were investigated. The addition of ground fiberglass composite was found to significantly increase tensile and flexural modulus, while decreasing impact strength. Ground fiberglass was found to have a greater stiffening effect than wood flour, but wood flour had no significant effect on impact strength.
Polycarbonate (PC) is used in computer and electronic housings, and here it was sought to reuse this polymer after having been separated from electronic shredder residue. The separated stream was not pure PC; there was some cross-contamination. The separated polymer was characterized by rheological, thermal and mechanical methods; the measured properties were only slightly inferior to those of comparable virgin materials. Recovered plastic and virgin polymer were blended using a TSE to determine the minimum virgin content needed to mask the effects of addition of recycled material on the rheological and mechanical properties of the blend. Differences in processing behavior and mechanical performance of the blends as a function of composition are discussed in relation to potential material recycling strategies.
Many outdoor products made from conventional lumber can be produced using wood flour filled polyethylene as a replacement material. In these applications the effect of ultraviolet radiation from the sun on the mechanical properties of these materials is important to understand prior to the design of any outdoor product. This study will examine the impact of long term ultraviolet exposure on the mechanical properties of wood flour filled high density polyethylene. An accelerated QUV testing apparatus will be used to simulate long term exposure to the sun. Impact strength, toughness, flexural modulus, and tensile strength will all be evaluated.
Due to the growing awareness of the necessity to protect the environment, the substitution of conventional plastic materials by biodegradable materials is gaining an ever increasing importance. An application that makes sense especially with regard to economic aspects is the processing of non-modified crop on plastics processing machines. This is made possible by the concept of a single-screw extruder equipped with a metering unit with which the total amount of energy required to plasticize the material is generated exploiting the friction occuring in the solid matter. As opposed to conventional extruder designs which exhibit separate areas for conveying the material and for plasticizing the same, these two tasks are united in one section of the extruder. The concept is based on specific geometries of screw and cylinder which secure that the entire mass flow passes a shear zone situated in the material conveying zone, warranting a very efficient transmutation of energy.
Hygrothermally decomposed polyurethane (HD-PUR) of polyester type has been used as a cost-efficient impact modifier in tri- and tetrafunctional epoxy (EP) resins. The PUR modifier was added between 5 and 80 wt.% to the EP prior its crosslinking with a diamine compound (Diaminodiphenylsulphone, DDS). The fracture toughness (Kc) and -energy (Gc) of the modified resins were determined on static loaded compact tension (CT) specimens at ambient temperature. The mean molecular weight between crosslinks (Mc) was determined from the rubbery plateau modulus of dynamic mechanical thermal analysis (DMTA) spectra. The change in the Kc and Gc as a function of Mc followed the prediction of the rubber elasticity theory. The efficiency of the PUR modifier was compared with that of a carbonyl terminated liquid nitrile rubber (CTBN). DMTA and fractographic inspection revealed that the PUR modifier was not only present in a dispersed phase of the EP matrix but participated in the build-up of the EP crosslinked network structure. Thus HD-PUR works as active diluent and phase separating additive at the same time. As HD-PUR can be regarded as an amine-functionalized rubber, it was used as hardener alone (by replacing DDS) in some EP formulations.
Maurice Biagini, Alexandre Paris, Jesse McDaniel, Vaclav Kovac, May 2000
Fly ash is a by-product of the ground coal burning process used in power generation plants. Since fly ash primarily consists of inorganic materials, it is a potential filler substitute for conventional fillers in the plastic industry. In this work, the mechanical, physical, and thermal properties of fly ash filled polypropylene were determined and the effect of adding fly ash on the properties of the resin was studied. Driven by the economical potential and environmental aspect of the usage of fly ash, this study enabled us to determine the viability of coal fly ash to be used as a substitute filler in plastic resins.
Making an useful product from a nearly useless item is never an easy task. When it comes to combining rubber crumb from used tires to plastics - the task is even tougher.
Stephen P. McCarthy, Qing Guan, Sandip R. Patel, Thomas M. Ellison, May 1999
The Valyi SFC molding process for surface finishing/compression molding (SFC) provides an economical route to molding and Class A finishing of large thermoplastic parts in one step. In the Valyi Process, decorative film or fabric is placed over a mold cavity in a press. Plastic melt is then deposited onto the film which subsequently heats the film to a formable temperature. Positive air pressure may be supplied to support the film/molten plastic. The press is then closed to form the final finished part. The process is similar to the textile back molding process. The Valyi Process uses much lower pressures than conventional injection molding. Molding (cavity) pressures for the Valyi Process are <<10 MPa (1450 psi) as compared to conventional injection molding which is typically >30 MPa (4350 psi). The in-mold lamination of paint film achieves the paint appearance and protection without the environmental and cost impact of conventional painting. Also, heating the film using the heat from the deposited melt eliminates the pre-heating step in the in-mold injection molding process. This paper describes the Valyi SFC Molding Process and reveals the advantages such as the mechanical performance of the part, reduction in cost and reduction in paint pollution, which can be achieved over the conventional injection molding - painting process.
Thermal properties are important parameters in both process and product design. In the case of plastics, the need for quick and accurate determination of thermal properties is gaining importance due to large variety of blends and recycled materials that are becoming available. A procedure based on an inverse method is presented for the determination of thermal conductivity and specific heat. The method makes use of transient temperature measurements. The temperature measurements are made in reference metal blocks and no temperature sensors are inserted in the plastic specimen. The method shows potential for obtaining the thermal properties over a wide range of materials and temperatures, and as a function of pressure. The method has been tested in simulation and results are presented.
84 countries and 60k+ stakeholders strong, SPE
unites
plastics professionals worldwide – helping them succeed and strengthening their skills
through
networking, events, training, and knowledge sharing.
No matter where you work in the plastics industry
value
chain-whether you're a scientist, engineer, technical personnel or a senior executive-nor
what your
background is, education, gender, culture or age-we are here to serve you.
Our members needs are our passion. We work hard so
that we
can ensure that everyone has the tools necessary to meet her or his personal & professional
goals.
Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:
Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.
Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.