The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.
Important Update: SPE's Technical Library Is Evolving The SPE Technical Library will be retired on September 15, 2025, as we transition to Polymer Insights—a powerful, AI-driven platform designed to transform how plastics professionals access and apply technical knowledge. Polymer Insights delivers answers and insights to your questions that are sourced entirely from SPE-curated content, including decades of peer-reviewed research, technical papers, and industry expertise. This new tool goes beyond search—providing intelligent, contextual results tailored specifically to you.
Open Access Preview: July 17–20, 2025
Be among the first to explore! From Thursday, July 17 through Sunday, July 20, Polymer Insights is open to all — no login required. Try it at www.polymerinsights.ai.
After July 20: Premium Members Only!
Don’t let this level of access end with the free trial!Starting on Monday, July 21, Polymer Insights will be exclusive to SPE Premium Members. Join SPE as a Premium member to keep unlimited access to this revolutionary tool!
Isabel O. Santos, António J. Pontes, Carla I. Martins, May 2013
Innovation, design freedom, cost and weight reduction are some factors for the replacement of metals by plastics. Plastics continue to offer attractive solutions for design engineers. The metallic effect obtained by incorporation of metal particles in polymers by injection molding has the advantage of eliminating post processing techniques such as painting or metallization. Moreover, it reduces production costs and time to get a superior part quality. Nevertheless, undesired defects in the final appearance of parts are common, such as flow lines and weld lines. These defects occur due to inhomogeneous orientation and anisotropy of the metal particles. Very few studies are reporting the influence of metallic particles on the morphology development of PP parts. This study focus on the production of composite materials made of PP/metallic pigments (aluminium, bronze and cooper) by injection moulding and on the influence of the metallic particles on the aesthetic and morphological properties of the parts.
The rotational molding industry has experienced safety, hygiene and quality issues when using 2,5- methyl-2,5-di(tbutylperoxy) hexyne-3 (referred to as P-H3 in this paper). P-H3 at >93% assay is the traditional organic peroxide crosslinker for the rotational molding of crosslinked HDPE. P-H3 is classified as a subsidiary explosive based upon United Nations and USA safety testing. Furthermore P-H3 exhibits undesirable air and skin hygiene issues during the manufacturing and handling of crosslinked parts due to the primary skin irritants that are created when P-H3 decomposes to crosslink the HDPE. These low molecular weight triple bond by-products are also responsible for the discoloration of the crosslinked HDPE. The under-cure and general “inconsistency of cure” quality issues are traced to the incompatibility and volatility of P-H3 in the HDPE molding powder.
Years of safety testing and R&D culminated in the development of Luperox® MIX (referred to as P-MX in this paper), specifically designed for the safe and reliable rotational molding of crosslinked HDPE. P-MX is a homogeneous blend of m/p-di(t-butylperoxy)diisopropylbenzene, triallyl cyanurate and a free-radical trap. The data in this technical paper demonstrates how P-MX addresses certain safety, hygiene and quality issues of P-H3. P- MX is a homogeneous solid at room temperature, with a 45°C melting point.
Kate E. Williamson, Emily McBride, William Arendt, May 2013
This paper focuses on three different rheometric techniques to analyze how dibenzoate and other plasticizers affect flexible polyvinyl chloride (PVC) processability. Both plastisol and melt compounds will be considered. This analysis includes the use of a research rheometer in an oscillatory mode to evaluate plastisols. A torque rheometer was used to evaluate melt compound formulations. New dibenzoate plasticizers and a new monobenzoate have been introduced and the nature of the solvator class of these new benzoates will be evaluated.
Shahrzad Ghaffari Mosanenzadeh, Hani Naguib, Chul Park, Noureddine Atalla, May 2013
In this study, open cell foams were fabricated from blends of bio-based polymers to be used as sound absorbers. Different blends of Polylactide (PLA) with two grades of Polyhydroxyalkanoates (PHA) where foamed and characterized based on acoustic and mechanical performance. Rheological properties of pure polymers as well as their blends were studied to investigate the effect of material elasticity on the acoustic absorption of the resulting foams.
Amber R. Tupper, Barbara A. Wheelden, Sunggyu Lee, May 2013
Polyurethanes synthesized using both unmodified and epoxidized, ring opened castor oil as a polyol were prepared and their thermal properties tested using thermogravimetric analysis and differential scanning calorimetry. Chemical changes upon degradation were investigated using Fourier transform infrared spectroscopy. The kinetics of degradation were elucidated using the Flynn-Wall and Flynn procedures. Epoxidized castor oil produces a rigid polyurethane exhibiting glassy behavior at ambient temperatures. All methods to determine activation energy of degradation indicate that, in a nitrogen environment, polyurethanes from unmodified castor oil are more thermally stable than those from modified castor oil. The appearance of peaks corresponding to amines, amides, and esters in FITR analysis of degraded samples suggests that the initial degradation step of the polyurethanes studied is the breaking of the urethane bond.
Paul Gramann, Javier Cruz, David Grewell, Melissa Montablo-Lomboy, Tong Wang, May 2013
There are multiple applications where chlorinated poly(vinyl chloride) (CPVC) may come in contact with glycerin. One common application is in fire suppression systems that could be subjected to subfreezing temperatures. Chlorinated poly(vinyl chloride) is increasingly being used for these systems in place of metal because of its many advantages, including the ease of installation, weight reduction, cost benefits and chemical resistance. When CPVC piping is used in an area that has the potential to freeze, an antifreeze solution must be used in the fire suppression systems to suppress the freezing temperature of the water and reduce possibility of failure of the piping system. Glycerin is a commonly used antifreeze for this application. The following article discusses the effects of using glycerin with CPVC piping and presents a case study of the use of bio-derived glycerin as an antifreeze agent. In general, it was found that glycerin from the bio-diesel industry had adverse effects on the CPVC.
Jun Peng, Yottha Srithep, Ronald Sabo, Srikanth Pilla, Xiang-fang Peng, Lih-Sheng Turng, Craig Clemons, May 2013
This paper presents a new process to fabricate single polyvinyl alcohol (PVA)/nanofibrillated cellulose (NFC) filament and its tensile properties at various ratios (0.5 ~ 3 wt %) of NFC. The fabrication process generally contains four steps: NFC isolation, preparation of PVA/NFC solution, gel spinning and drying, and filament stretching. The ultimate strength of PVA/NFC increased by almost 2 times, compared with stretched neat PVA filament. In order to ensure that the NFC fibers disperse well in PVA solution, high shear processing was employed. To study the possible degradation of PVA caused by high shear, the parallel plate rheometer was used to investigate the viscosity of PVA/NFC solutions. The PVA crystal orientation in PVA/NFC filament was also characterized by wide angle x-ray diffraction (WAXD).
Brian Ralston, Jennifer M. Hoffman, Maureen T.F. Reitman, May 2013
Fractography is a powerful tool in the failure analyst’s arsenal, allowing unknown conditions that led to a failure to be revealed by examination of a fracture surface. In this study, fractures generated by different failure mechanisms were examined by scanning electron microscopy (SEM) to discern key characteristics and distinguishing features. Amorphous polycarbonate (PC) and semicrystalline acetal homopolymer were fractured by impact, tensile overload, cyclic fatigue, and creep. SEM images are provided and discussed.
This work will focus on an approach to improve the impact toughness of poly (lactic acid) or PLA without compromising the biobased carbon content and compostability of PLA. Specifically, low-crystallinity and amorphous PHB copolymers were demonstrated to be very effective in improving the toughness of PLA at modest loading levels of 10-20 weight percent. This presentation will also compare the above approach with urethane, butadiene and acrylic impact modifiers along with the impact modification provided by other compostable polymers such as PBS and PBAT. Of particular significance is the extent of impact modification provided by an amorphous PHB copolymer (M4300 @ 10-20% loading) wherein the blend demonstrates a combination of mechanical properties that rival those of some engineering thermoplastics. Morphological considerations for the observed improvement in impact performance will also be highlighted.
A new class of high performance amorphous thermoplastic polyimide (TPI) resin has been designed with a glass transition temperature exceeding 300°C while still being 100% melt-processable. Further, this novel material has been bestowed with the highest UL (Underwriter’s laboratory) RTI rating in the world for an unfilled thermoplastic. The polymeric material offers outstanding high temperature strength and dimensional stability which makes it attractive to be positioned in applications with an emerging need of such materials that are truly melt-processable while giving as-molded properties for end use.
The Method of Ellipses has been applied to short and long fiber polymer composites in order to quantify the fiber orientation distribution within the end-gated plaque. Short and long glass fibers with post- processing average fiber lengths of 0.364 and 3.90 mm, respectively, have been studied at multiple percentages of mold flow, including at the gate and entry region and near the advancing front. Additionally, orientation data has been acquired for short glass fibers at multiple locations of plaque width including near the side mold wall. Preliminary data suggests that the orientation of short and long glass fibers is similar along the centerline of the plaque, with both fiber lengths developing the predicted core-shell structure at moderate to high percentages of mold fill. However, short glass fibers exhibit a broad and relatively uniform orientation distribution in the regions of complex flow at high percentages of plaque width, with a substantial increase in flow-aligned fibers. Work is ongoing to complete analysis of long glass fibers in regions of complex flow near the side walls of the mold.
Christopher Thellen, Corey Hauver, Jo Ann Ratto, May 2013
Material optimization of biodegradable and water soluble polymers along with the influence of fresh and salt water conditions on the performance of polyvinyl alcohol-based films was examined for a U.S. Naval sonobuoy decelerator application. PVOH films of various thicknesses were produced on a manufacturing-scale lamination line using a solvent-based adhesive. Salt water and its temperature significantly influenced dissolution properties of the films. Mechanical properties of the as-received and laminated films were also examined and reported.
David Grewell, Tong Wang, Melissa Montalbo-Lomboy, Linxing Yao, Paul Gramann, Javier Cruz, May 2013
Many chemicals have the ability to attack on plastics as solvents and can lead to failure. In some cases, the source of the solvent is not well defined. In this study, the effect of biodiesel, a fatty acid methyl ester, on various plastics, namely polyamide 6 (PA 6), polycarbonate (PC), acrylonitrile-butadiene- styrene (ABS) and ABS/PC plastic blends was studied. Various feedstocks of biodiesel were also studied, including, soy bean oil (new and used), animal fat (tallow), corn oil as well as choice white grease. The plastics samples were tested under ASTM standard where a predefined strain is applied to the samples prior to exposure to the solvent (biodiesel). It was found that under the majority of combinations, other than PA 6, cracking was seen within 12 hours, and with ABS/PC and PC cracking was seen in minutes. Thus, it has been shown that biodiesel can be a degrading solvent for engineering plastics, such as PC, ABS and ABS/PC blends.
This technical paper strives to provide a high-level overview of the underpinnings and application of web tracking technology. From there, we will explore the market for this product space and outline a roadmap for successful adoption of analytics tracking in an organization. This approach can help plastics companies of any size effectively inform priorities ranging from customer relationship management to branding. The central thesis of this paper is that effective data-driven marketing depends on building a corporate culture that “competes on analytics”.
Doyoung Moon, Jan Obrzut, Jack F. Douglas, Kalman B. Migler, May 2013
The electrical conductivity of polymer nanotube composites can be dramatically modified during processing steps. We examine the interplay between processing, the multi wall carbon nanotube (MWCNT) network structure and the resulting conductivity through 3D measurements of cluster size distributions and orientation. We discover that the nanotubes assemble into clusters whose mass distribution follows a classic power law with a slope of approximately -1. This mass distribution is relatively insensitive to the imposed flows over our accessible shear range, even though the conductivity changes by orders of magnitude. The orientation distribution of the MWCNTs within the clusters is strongly dependent on the flow type and its magnitude, but does not correlate with conductivity. These results point to the dominant role played by the nanotube –nanotube contact resistance as a determinate of composite conductivity.
Majed Alsarheed, Salah Alrihan, Punlop Teeraparpwong, John P. Coulter, May 2013
This paper describes current efforts to investigate and expand melt modulation capabilities to control the packing parameters of cold-runner based injection molding processes. Packing parameters, including packing pressure and packing time, have significant impact on the internal molecular orientations, mechanical properties and optical performance of injection molded polymeric products. The investigation focuses on manipulating and controlling packing parameters in order to produce molded parts with different optical properties in each injection molding cycle. Numerical simulations of common thermoplastic optical polymers, such as PMMA, PC, and PS and some experimental results are also presented.
Polymers are increasingly being used for engineering structures and medical devices because of their excellent corrosion resistance and low cost compared with metals. However, the lifetime of plastics used in severe environments is significantly reduced due to environmental stress cracking (ESC). Current understanding of ESC in polymers is mostly empirical. In this paper, a methodology for investigating ESC in polymers is presented. The proposed approach, based on the cohesive zone model (CZM), is capable to characterize the degradation in the fracture zone explicitly, independent from the bulk material. In our preliminary investigation, the fracture on an elastic-plastic material was simulated, and the results were compared to a published paper. The simulation outcome indicates that the CZM is an effective tool to study fracture propagation in polymers under ESC.
A novel type of polyimide (PI)-polyurea (PU) block copolymers containing polysilsesquioxane was successfully prepared by reacting ladder-like polysilsesquioxane (LPS) with poly(amide acid)-b-polyurea, followed solution film casting and thermal imdization. The LPS composed of mercapto and fluoride side groups was synthesized by using the sol –gel and monomer self-assembly methods. The resulting hybrid films have outstanding surface and thermomechanical properties. The dynamic contact angles (DCA) and dynamic mechanical thermal analysis (DMA) were used to study the surface energy and mechanical properties of the hybrid films. The presence of LPS containing fluoride and mercapto side groups dramatically increased in the degree of imidization by low temperature curing (150°C).
Sascha Englich, Thomas Scheffler, Michael Gehde, May 2013
The objective of the study is to analyze the influence of the mold filling behavior during injection molding of phenolic compounds on mechanical properties. Injection molding filling studies, mechanical testing and optical microscopy were done while varying mold geometry (injection gate and cavity height), mold temperature and injection rate during injection molding a highly filled phenolic compound. It was found that the mold filling behavior varies with changing the injection molding parameters as well as the mold geometry. In consequence of this the mechanical properties change according to the resulting reinforcement orientation.
Avraam I. Isayev, Tian Liang, Todd Lewis, May 2013
The present study is devoted to ultrasonic devulcanization of tire rubber particles of 10 and 30 meshes by means of a new ultrasonic twin-screw extruder. Ultrasonic amplitude and devulcanization temperature were varied at a fixed frequency of 40 kHz. The die pressure and ultrasonic power consumption during devulcanization were recorded. Degree of devulcanization was investigated by measuring the crosslink density, gel fraction and revulcanization behavior. Rubber of 30 mesh exhibited a lower die pressure and higher degree of devulcanization than those of rubber of 10 mesh. Due to the higher level of devulcanization and lower viscosity of devulcanized rubbers at higher amplitudes, the temperature of devulcanized rubbers at the die was reduced with an increase of the ultrasonic amplitude. Cole-Cole plots, crosslink density and gel fraction of devulcanized and revulcanized rubbers, revulcanization behavior, and modulus of revulcanizates separated in two distinct groups based on the level of devulcanization and effect on molecular structure of devulcanized rubber. Revulcanizates with a greater degree of devulcanization exhibited higher elongation at break, while those with a lower degree of devulcanization exhibited higher strength and modulus. Revulcanizates of rubber of 30 mesh exhibited a consistently higher elongation at break. The normalized gel fraction versus normalized crosslink density was described by a unique function independent of the processing conditions and rubber particle size.
Kim McLoughlin Senior Research Engineer, Global Materials Science Braskem
A Resin Supplier’s Perspective on Partnerships for the Circular Economy
About the Speaker
Kim drives technology programs at Braskem to develop advanced polyolefins with improved recyclability and sustainability. As Principal Investigator on a REMADE-funded collaboration, Kim leads a diverse industry-academic team that is developing a process to recycle elastomers as secondary feedstock. Kim has a PhD in Chemical Engineering from Cornell. She is an inventor on more than 25 patents and applications for novel polyolefin technologies. Kim is on the Board of Directors of SPE’s Thermoplastic Materials & Foams Division, where she has served as Education Chair and Councilor.
A Resin Supplier’s Perspective on Partnerships for the Circular Economy
About the Speaker
Gamini has a BS and PhD from Purdue University in Materials Engineering and Sustainability. He joined Penn State as a Post Doctorate Scholar in 2020 prior to his professorship appointment. He works closely with PA plastics manufacturers to implement sustainability programs in their plants.
A Resin Supplier’s Perspective on Partnerships for the Circular Economy
About the Speaker
Tom Giovannetti holds a Degree in Mechanical Engineering from The University of Tulsa and for the last 26 years has worked for Chevron Phillips Chemical Company. Tom started his plastics career by designing various injection molded products for the chemical industry including explosion proof plugs and receptacles, panel boards and detonation arrestors for 24 inch pipelines. Tom also holds a patent for design of a polyphenylene sulfide sleeve in a nylon coolant cross-over of an air intake manifold and is a Certified Plastic Technologist through the Society of Plastic Engineers. Tom serves on the Oklahoma Section Board as Councilor, is also the past president of the local Oklahoma SPE Section, and as well serves on the SPE Injection Molding Division board.
Joseph Lawrence, Ph.D. Senior Director and Research Professor University of Toledo
A Resin Supplier’s Perspective on Partnerships for the Circular Economy
About the Speaker
Dr. Joseph Lawrence is a Research Professor and Senior Director of the Polymer Institute and the Center for Materials and Sensor Characterization at the University of Toledo. He is a Chemical Engineer by training and after working in the process industry, he has been engaged in polymers and composites research for 18+ years. In the Polymer Institute he leads research on renewably sourced polymers, plastics recycling, and additive manufacturing. He is also the lead investigator of the Polyesters and Barrier Materials Research Consortium funded by industry. Dr. Lawrence has advised 20 graduate students, mentored 8 staff scientists and several undergraduate students. He is a peer reviewer in several journals, has authored 30+ peer-reviewed publications and serves on the board of the Injection Molding Division of SPE.
Matt Hammernik Northeast Account Manager Hasco America
A Resin Supplier’s Perspective on Partnerships for the Circular Economy
About the Speaker
Matt Hammernik serves as Hasco America’s Northeast Area Account Manager covering the states Michigan, Ohio, Indiana, and Kentucky. He started with Hasco America at the beginning of March 2022. Matt started in the Injection Mold Industry roughly 10 years ago as an estimator quoting injection mold base steel, components and machining. He advanced into outside sales and has been serving molders, mold builders and mold makers for about 7 years.
84 countries and 85.6k+ stakeholders strong, SPE
unites
plastics professionals worldwide – helping them succeed and strengthening their skills
through
networking, events, training, and knowledge sharing.
No matter where you work in the plastics industry
value
chain-whether you're a scientist, engineer, technical personnel or a senior executive-nor
what your
background is, education, gender, culture or age-we are here to serve you.
Our members needs are our passion. We work hard so
that we
can ensure that everyone has the tools necessary to meet her or his personal & professional
goals.
Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:
Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers, ISBN: 123-0-1234567-8-9, pp. 000-000.
Available: www.4spe.org.
Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.