SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library

Sort By:  Date Added   Publication Date   Title   Author

Conference Proceedings

Characterization of Polyethylene Pipe Degradation by FTIR Microspectroscopy Imaging Method
Kiyomi Okada, Tetsuya Tsujii, Tatsuro Ueda, Kazushi Yamada, Hiroyuki Nishimura, May 2013

Polyethylene (PE) pipe life time prediction was carried out by using FTIR micro spectroscopy imaging and DTA analysis. The FTIR imaging method was used for considering the rapid change of the yield stress ratio of the specimen by the tensile test due to thermal degradation of PE after the hot air exposure at 120 °C. From the results, PE structural change took place after the reduction of antioxidant in the specimen. The results have been in an agreement with the evaluation of DTA analysis for the surface and inside area of the specimen. The FTIR micro spectroscopy transmission and ATR imaging method makes it possible to exactly and easy clarify the degradation mechanism of the PE pipe.

Benefits of Hollow Glass Microspheres in Glass Fiber Reinforced Thermoplastics
Baris Yalcin, Steve E. Amos, Mark J. Williams, Ibrahim S. Gunes, Stefan Friedrich, Marcel Doering, May 2013

Hollow Glass Microspheres, due to their unique spherical geometry and low density, provide several benefits in glass fiber reinforced composites. They help produce lighter weight parts in order to achieve stringent fuel economy targets for automotive and aerospace manufacturers. They also provide productivity benefits through shorter cooling times, enhanced dimensional stability and less warpage – helping to reduce waste and improve throughput. This paper demonstrates these benefits with effective formulation strategies in glass fiber filled polypropylene and polyamides.

Viscoelastic Simulation of Bi-Layer Coextrusion in a Square Die: An Analysis of Viscous Encapsulation
Mahesh Gupta, May 2013

The Giesekus model is used for viscoelastic simulation of a bi-layer flow in a square die. In contrast to the experimental data reported in the literature, in the present work even with viscoelastic effects included in the simulation, encapsulation of a high viscosity polymer by a lower viscosity polymer could not be captured. Since the viscous encapsulation could not be captured with a purely viscous formulation either, it is concluded that the difference in the wettability and surface tension of the two polymers is probably the major factor resulting in the encapsulation.

Precision Milling of Hardened Tool Steel for Micro Mold Making
Florian Böhmermann, Oltmann Riemer, May 2013

High volume production of micro parts from metals or plastics requires appropriate replication processes like micro metal forming or micro injection molding. Regardless which replication process is applied micro molds and their manufacture - very often made from hardened tool steels - are crucial for an economic success. Here precision milling has shown its great potential and examples for the mold making as well as replication are given. Nevertheless, the decisive measure for parts’ quality are often their mechanical properties and testing of micro parts shows specific challenges.

Methodology for Generation of Time-Temperature-Transformation (TTT): Solid and Cellular EPDM rubber
Nora Catalina Restrepo-Zapata, Tim A. Osswald, Juan Pablo Hernandez-Ortiz, May 2013

The vulcanization kinetics of solid and cellular EPDM is studied using Differential Scanning Calorimetry (DSC). This study uses dynamic DSC to obtain the total heat of vulcanization and isothermal DSCs show the reaction rate behavior at constant temperatures and the presence of the diffusion in the process, using a novel technique (quasi-isothermal tests). Modeling employs modified Hernandez-Ortiz and Osswald methodology that uses a non-linear regression routine and is based on Kamal-Sourour model to calculate the kinetic variables of the reaction; also includes DiBenedetto’s equation to find the diffusion variables. The TTT-cure diagrams are built by numerical integration of the adjusted kinetic model and vitrification line is calculated by the change of glass transition temperature (Tg) with curing degree.

Effect of process parameters on properties of devulcanized rubber obtained from a supercritical CO2 assisted devulcanization process
Mohammad Meysami, Prashant Mutyala, Shuihan Zhu, Costas Tzoganakis, May 2013

Continuous devulcanization of tire rubber crumb was performed using supercritical CO2 in an industrial scale twin screw extruder. A reasonably high throughput extrusion process has been developed and the effect of processing conditions has been studied. Using a fractional factorial design in three levels, the effects of process temperature, screw speed, and feed rate on the sol and gel fractions and degree of devulcanization of devulcanized rubber have been investigated.

Using Novel Ethylene-maleic anhydride (EMAh) Copolymers To Upgrade Recycled Nylon To Match or Exceed Prime Virgin Nylon Performance
Ashok Adur, May 2013

Nylon is widely used in many applications. There is a vast amount of recycled nylon coming from the carpet and textile and other industries. Due to degradation and loss of viscosity, this recycled nylon has reduced performance and limited its use. The unique chemistry of alternating copolymers of ethylene and maleic anhydride provide several advantages for upgrading recycled nylon. This paper discusses the results obtained with compounding prime grade nylon as well as recycled nylon with the addition of small quantities of this copolymer and specific property improvements for applications in injection molded compounds. The resulting compounds are performance that can match or exceed prime virgin nylon at 30-50% cost savings.

Optimization of 'Feedstocks' for Replicative Process in Micromanufacturing
Elsa W. Sequeiros, Vanessa Neto, Teresa Vieira, May 2013

Dimensional precision and microdetails of metallic parts/devices, associated to a low cost production, requires the use of replicative processes in analogical of micromanufacturing. If powder injection molding (PIM) is a well-established process, metal powder hot embossing is now emerging. In this work 316L stainless steel parts were processed from powder using hot embossing. In this process the development of suitable feedstocks is crucial to assure the quality of the final parts. This study is a part of a larger project of the Engineering & Tooling sector, named Tooling EDGE.

Life Cycle Analysis of Various Paint Products Used In The Production Of Consume Products
John Fiorini, Igor Kandare, May 2013

In the Beckers organization sustainability has become a very important topic. It is a broad topic and from here we have been deriving areas of focus for our sustainability program. One vital step towards the pursuit of sustainable development would involve an in-depth look into the carbon exposure of the organizations’ value chain and operation. The Beckers organization undertook this activity by completing a life cycle analysis of our 4 major paint products that are commonly used in the production of mobile consumer products. This investigation was part of an initiative that was take with the support of The Natural Step, a nonprofit organization that provides support to organization committed towards sustainable development. The life cycle analysis was conducted within defined boundary conditions and had revealed that various paint technologies appear to contribute to varied levels of equivalent CO2 emissions.

Temperature, Pressure Characterization, and Surface Analysis of Elastomeric Hockey Pucks
Steven Deane-Shinbrot, Jonathan Rapp, Satya Shivkumar, May 2013

The mechanical and material properties of two different forms of elastomeric hockey pucks were found. In order to determine the cause in performance variation, an analysis of temperature variations, surface roughness and pressure distributions was performed. The surface roughness and pressure distributions varied from puck to puck, indicating a possible cause for altered game play. After removing the pucks from a freezer and storing them in an ice bucket for the duration of game play, game and practice pucks increased in temperature at similar rates. Controlling the rate of heating could provide a consistent vertical bounce for both types of puck and standardized for league play. The data demonstrated that the quality of pucks differs from each individual manufacturer, while batch to batch variations from the same manufacturer were negligible. Due to constant changes in temperature of the elastomeric hockey pucks, the thermal expansion and, the resulting oscillating stresses can affect puck performance. In doing so the pucks would become more predictable based on their elastomeric makeups.

Cosmetic and Vibrant Effects in IMD
Mohammed Razaq, May 2013

Product differentiation is one of the key features of selling products and generating competitive edge over the competition. Branding is more important than ever, especially, in the consumer electronics industry. The cosmetic nature of differentiated products drives sales, as the products have become an integral part of everyday life. Most of the products these days offer the same or similar functionality. One of the ways to make these products stand out from a crowded market, is to introduce new decorative, cosmetic and eye catching effects to the housings of the products. These decorative effects can be achieved in a variety of ways, including printing and holographic foiling. These products can then be used in 2d/3d format with the combination of ink technologies and Insert Injection Moulding.

Tensile Property Changes in Commercial Biopolymer Products Based on Environmental Conditons
Kelly M. Buffum, Hannah K. Pacheco, Satya Shivkumar, May 2013

The current trend towards sustainability has created new interest in biodegradable plastics. While many investigations have examined the behavior of biodegradable plastics, the changes in properties that may occur during use have not been fully developed. The mechanical properties of seven types of biodegradable plastics were analyzed. In addition, the properties of polystyrene (PS) used in similar applications were examined. The effects of UV exposure, humidity and accelerated aging on the mechanical properties were studied. In general, the strength of several biopolymers was less than that of PS. Polylactic acid and wheatstraw had a higher strength than PS. The properties of biodegradable plastics deteriorated significantly upon exposure to UV radiation and humidity. Accelerated aging data indicates that after 6 months under ambient conditions, the biodegradable plastics also have a reduction in strength and modulus. Additional improvements may be necessary to resist environmental effects so that biopolymers can be effective replacements for traditional plastics.

Novel CuNW/VDF Nanocomposite for Charge Storage: Comparison of its Dielectric Properties with MWCNT/PVDF Nanocomposite
Aline B. da Silva, Rosario E. Bretas, Mohammad Arjmand, Uttandaraman Sundararaj, May 2013

Multi-walled carbon nanotubes (MWCNT)/ poly(vinylidene fluoride) (PVDF) and copper nanowires (CuNW) / PVDF nanocomposites with filler content ranging from 0.4 to 1.5 v% were prepared by the miscible solvent mixing and precipitation method followed by melt compression. The electrical and dielectric properties of MWCNT/PVDF and CuNW/PVDF nanocomposites were then compared; it was observed that the CuNW/PVDF nanocomposites had the highest real permittivity combined with a low dissipation factor (tan ?) due the presence of a thin layer of oxidation in the CuNW surfaces, which works preventing the direct contact between the conductive fillers.

New Biopolymer Alloys: Plexiglas® Rnew for Durable Applications
Carmen Rodriguez, Robert Barsotti, May 2013

Altuglas International, a division of Arkema Inc. has recently developed Plexiglas® Rnew acrylics, a new technology based on poly(methyl methacrylate)/biopolymer blends. These resins, containing ? 25% renewable carbon, are in line with Arkema’s commitment to sustainability while offering exceptional performance for transparent or opaque durable goods in medical, transportation, building and construction, and consumer applications. As opposed to many green plastics, where material performance must be sacrificed for bio-content, this technology allows for impact properties, chemical resistance, and processability far superior to traditional acrylic products.

High Recycle Content PBT/PC Product Development
Yuzhen Yang, Angelika Clark, Tianhua Ding, May 2013

PBT/PC blends provide an excellent balance of chemical resistance, mechanical strength (especially at low temperature), and processability for a wide range of applications. Recently, appliance applications started to demand more sustainable, environmentally-friendly and green materials without sacrificing any properties for their new generation products. To respond to this market requirement, a high recycle content PBT/PC blend with excellent chemical resistance properties, good FR performance, and great mechanical properties was developed. The use of a high recycle based PBT/PC blend is the key to opening a new door to the more sustainable and green world for future appliance applications.

Hydroxyl-Functionalized Polypropylenes - Crystallinity and Structure
Jolanta E. Marszalek, Sahil Gupta, Mukerrem Cakmak, Robert A. Weiss, May 2013

In search of improved polymeric materials for capacitors, OH-modified polypropylenes are evaluated. Thermal and structural aspects are reported as to establish their influence in voltage breakdown characteristics. In industry polypropylenes films are biaxially oriented to improve their voltage breakdown, however the orientation of polypropylenes has to be done in partially molten state. Within these semimolten states other processes are also observed, mainly re-crystallization. The presence of intermolecular H-bonding between the OH groups affects polypropylene structure and its properties e.g. thermal. Extended annealing at various crystallization temperatures of PPOH materials results in recrystallizations processes that change the thickness of the lamellae, but not their ?-monoclinic crystal structure. The percent crystallinity decreases with increasing crystallization temperatures, however the process of annealing increases total amount of crystalline fraction in the material, which might lead to increased brittleness. Annealing leads to formation of well observed kebab-like lamellae structure.

Assessment of Polybutylene Plumbing Installation after 18 Years of Service
Dale B. Edwards, Donald E. Duvall, May 2013

An analysis was undertaken to assess the condition of polybutylene (PB) pipes that had been in service for 18 years. The building owners were concerned about the future reliability of the piping system given some of the previous publicity on the past concerning PB piping systems. The pipes were inspected and tested, showing that the 18-year-old pipes still met the ASTM specification requirements for new PB pipe and exhibited only superficial oxidation due to water service exposure. The PB pipe samples were also pressure tested for burst and long-term stress rupture properties and exhibited equal or better performance compared to new PB pipe.

High Temperature Shape Memory Polymer
Ying Shi, Robert A. Weiss, May 2013

A high switching temperature shape memory polymer system was developed from metal salts of sulfonated PEEK ionomer and ionomer/fatty acid salt compounds. The metal salts of sulfonated PEEK (M-SPEEK) show moderate shape memory behavior, but compounds show promising shape memory behavior. The compounds were prepared from the mixture of sulfonated polyether ether ketone (PEEK) metal salts (sodium and zinc) and low molar mass crystalline fatty acid salt sodium oleate (NaOl). Ionic clusters formed by the interactions of ionic groups provided a permanent cross-link network and strong dipolar interactions between the ionomer and a dispersed phase of crystalline NaOl provided the temporary network. A temporary shape was achieved and fixed by deforming the material above the melting temperature (Tm) of NaOl and then cooling under stress to below Tm. The permanent shape was recovered by reheating the material above Tm without applying stress. Shape fixing efficiency of 96% was achieved and shape recovery reached 100%. Triple shape memory behavior was observed in M-SPEEK/NaOl systems which have two thermal transition mechanisms.

Thermal endurance and the thermal degradation kinetics of a Polypropylene/wood composite in an inert and oxidative atmospheres
Elkin D. Cardona, May 2013

A commercial wood polypropylene composite was developed using a twin screw extruder. Thermal endurance of the compound was assessed under oxidative and inert atmospheres by using conventional thermogravimetric analysis; the thermal endurance of PP is higher in an inert atmosphere, while the thermal endurance of wood powder is very similar in both atmospheres. In contrast, the thermal endurance of the wood polypropylene composite is higher in air. The activation energy results showed that the values obtained by conventional TGA had the same order of magnitude as values obtained from Modulated TGA. Fourier transformed infrared, electron microscopy was done to evaluate the chemical and physical interaction of materials in the final compound.

Optimizing Pipe Extrusion Dies Using CFD Simulation
John R. Puentes, Tim A. Osswald, Steve Schick, Jed Berg, May 2013

The extrusion of polyolefin pipes suffers degradation due to mechanical design problems of the extrusion die that is commonly used. This study uses numerical and computational approaches to detect problematic areas in the die geometry. Simulations show that in the conventional die there are areas of stagnation and recirculation of the melt flow, resulting in greater residence times, one of the main causes of degradation. This study introduces the use of novel profiles, which reduce stagnant flow regions, recirculation events, and can optimize the pipe extrusion process. Additionally, this study illustrates a methodology based on residence time distribution (RTD), a parameter that can be applied in optimization of the tooling and equipment in extrusion processes.

  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net