SPE-Inspiring Plastics Professionals

SPE Library


The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 


Search SPE Library
    
    




Sort By:  Date Added   Publication Date   Title   Author

Conference Proceedings

SELECTING DISPERSING AGENTS FOR THERMOSET/CARBON NANOTUBE MASTERBATCHES
M.R. Loos, J. Yang, D.L. Feke, I. Manas-Zloczower, May 2012

This work presents an approach for preparing long-term stable suspensions of multi-walled carbon nanotubes (MWCNTs) in different components of thermoset resins with the goal of developing a strategy for preparing master batches. Suspensions of CNTs in different components of epoxy, VE and PU systems have been prepared using a tip sonicator and different amounts of block copolymers. The resistance to sedimentation of MWCNTs in various media was systematically investigated by using a centrifugation technique.

THE GOLDEN TRIANGLE: A STRATEGY FOR IMPLEMENTING SUCCESSFUL PRODUCTS FOR THE MASTERBATCH INDUSTRY
Coreen C. Becker, May 2012

As the competitive landscape for the coloration of plastics rapidly contracts, expands and moves in new directions, new products are required to meet the demands of the marketplace. This paper will outline some strategic methods that can synergize to meet these demands. Some of these strategies have been used by different industries but this paper will use strategies from different types of businesses that will provide a novel perspective on the masterbatch industry and will have implications for other industries as well.

RELATION BETWEEN WATER PENETRATION BEHAVIOR AND PRODUCT QUALITY IN WATER-ASSISTED INJECTION MOLDING (WAIM) AT DIFFERENT PROCESS PARAMETERS
Sofie Sannen, P. Van Poyvelde, Jozefien De Keyzer, May 2012

Measurements of water pressure and water volume flow rate during water injection were related to both the part weight and a visual inspection of part cross-section at different process settings. It was found that the residual wall thickness (RWT) as well as the formation of part defects depend on the polymer resistance, since the variation of this latter leads to a change in both the water bubble width and velocity. Therefore, product quality depends on process parameters such as water volume flow rate and water injection delay time, which have an influence on this polymer resistance.

CHAIN EXTENSION OF LOW VISCOUS PA 66 IN REACTIVE EXTRUSION PROCESS IN ORDER TO EXTRUDE THICK-WALLED PIPES
Dan Zhang, Hans-Gerhard Fritz, Christian Bonten,, May 2012

The aim of this study is to increase the complex viscosity of low viscous polyamide 66 (PA 66) by means of a chain extension process. The technical goal of the process is to extrude thick-walled pipes from chain extended PA 66 without the appearance of sagging problems. The influence of styrene maleic anhydride (SMA) and epoxide (EP) on chain extension of PA 66 were studied using a co-rotating twin- screw extruder. To evaluate the coupling effects of the different extenders on PA 66, the rheological and mechanical properties of the chain extended PA 66 were investigated. The extruded pipes, obtained from chain extended PA 66, featured a considerably improved wall-thickness distribution.

COMPARATIVE STUDY OF THE EFFECT OF NATURAL AND ARTIFICIAL WEATHERING OF POLYPROPYLENE / ETHYLENE VINYL ACETATE (PP/EVA) BLENDS
Rabeh Elleithy , Othman AlOthman, Shafaat Salahude, S. M. Al-Zahrani, May 2012

In this paper the effect of natural exposure and artificial weathering properties of PP/EVA blends was investigated. Different blends were compounded and pelletized using twin screw extruder. Then, ASTM standard samples were molded using injection molding machine. Naturally exposed samples were placed in the open air of Riyadh, Saudi Arabia for up to 7 months (from August to February). Whereas, the artificially weathered samples were exposed to UV radiation from a Xenon arc lamp at 65 °C for different times. The effect of weathering on the blends was evaluated via: Fourier transformation infrared (FTIR) analysis and Differential Scanning Calorimetry (DSC). The chemical analysis via FTIR showed that the intensity of the vinyl Acetate concentration decreased with exposure time due to acetylation. The most pronounced effect of radiation is associated with oxidative degradation which was concluded from the increase of corresponding transmittance bands located above 3000 cm-1. The crosslinking of PP/EVA blends attributed to the formation of vinylidene group. The thermal analysis via DSC illustrated that the melting temperatures of PP and PP/EVA (5%) noticeably decreased with exposure time. However, the melting temperature of PP/ EVA (20%) blend decreased slowly.

EFFECT OF NANO - SIO2 ON THE CRYSTALLINITY AND CRYSTALLIZATION BEHAVIOUR (NON-ISOTHERMAL AND ISOTHERMAL) OF POLYETHYLENE TEREPHTHALATE (PET) NANOCOMPOSITE.
Rabeh H. Elleithy, M. E. Ali Mohsin, Ilias Ali, S. M. Al-Zahrani, May 2012

Polyethylene terephthalate (PET) with nano SiO2 were prepared using a Haake batch mixer. The thermal properties of PET and its nanocomposites were investigated by differential scanning calorimetry (DSC). The crystallization process of the nanocomposites samples was found to be different than that of the neat PET. The presence of SiO2 shows a considerable effect on the crystallization behavior and crystallinity of the composites. The Half crystallization time of the nanocomposites was evaluated using Avrami's method. The morphology of the composites was characterized by Scanning Electron Microscopy (SEM). The dispersion and interfacial interaction between SIO2 and the polymer matrix were also investigated using SEM.

CONTROLLING ADHESION OF DIGITAL UV DECORATING TECHNIQUES
Rory Wolf, May 2012

Many experiments have been performed globally to investigate ways of controlling and improving adhesion of energy curable UV paints, inks and coatings utilized to decorate structural polymers. This paper discusses a new class of atmospheric surface activation systems, appropriate measurements of wettability and adhesion, over-treatment effects and surface analysis techniques relative to optimizing the adhesion of UV inks, paints, coatings and adhesives to structural polymer surfaces. Recommendations for improved activation by substrate and application are discussed.

NEW ADVANCES IN BONDING POLYOLEFIN-BASED PLASTICS
Alex Matassa, May 2012

Since the first industrial production of polyethylene in the 1930’s, polyolefin based plastics have become inescapable in our daily lives and indispensable to the production of modern industrial products. Although polyolefin based plastics such as polyethylene (PE) or (HDPE), polypropylene (PP) and low density polyethylene (LDPE) have proven useful in innumerable applications they have also proven difficult to bond to with adhesives. Advances in the field of bonding to polyolefin plastics have been made by the introduction of various surface pre-treatment methods and adhesives based on polyolefins themselves. However, polyolefin based adhesives generally suffer from a lack of cohesive strength and surface pre- treatment adds significant cost and process complexity. Today we have new developments in the field of polyolefin bonding without the need for these cumbersome pre-treatment procedures. A novel two part acrylic adhesive developed by Henkel has shown to provide many desirable attributes for polyolefin bonding such as easy mixing, fast fixture time and superior bonding to untreated olefins.

HOW TO CONFIRM LIGHT CURE ADHESIVES ARE FULLY CURED
Anne Forcum, May 2012

Light cure adhesives have become the assembly method of choice in high volume, automated manufacturing lines producing hand held electronics, medical devices, appliances, optical equipment, speakers, and screens/displays. Curing in seconds when exposed to light of the proper wave length and intensity, light cure adhesives offer infinite open times and allow manufacturers to reposition parts as necessary before cure begins. Available in formulations that respond to UV and/or visible light, these adhesives adhere to a wide range of plastics, as well as metals and glass. A primary concern for manufacturers using light cure adhesives is confirming that their light cure adhesive has fully cured. Incomplete cure can occur when cure lights degrade, have the incorrect wavelength or the incorrect intensity. In addition, the failure of the cure lights to illuminate the adhesive bond-line completely or for sufficient time can also result in incomplete cure, leading to device failure in the field. Until recently, no rapid, in-line method existed to provide a quantitative confirmation of the degree of cure. The Henkel Corporation recently developed a revolutionary new system designed to quantitatively confirm the complete cure of a light cure adhesive. Instantaneous, simple and In- line, the Loctite® AssureCure® System includes a unique adhesive, optical measurement equipment, and software that provides degree of cure measurements on 100% of your assembled devices.

STRUCTURAL BONDING ALTERNATIVES FOR PLASTICS
Rachel Nashett, May 2012

Plastics have become an integral part of everyday life. It would be difficult to identify a manufacturing process which does not use plastics in one from or another. Even products which appear to be composed exclusively of metals are usually coated, sealed, or adhesively joined using polymeric materials which improve the performance, appearance, and longevity of metal products. Plastics have achieved widespread acceptance due to the virtually limitless combinations of plastic types, fillers, and additives which can be compounded at relatively low costs and processed by a wide variety of methods. When designing assemblies made from or including plastics, it is often critical to structurally hold assemblies together with a reliable mechanism. Plastics can be reliably fastened to a wide variety of substrates using an engineered adhesive solution.

WHEN IS IT TIME TO DIGITALLY DECORATE? MAKING THE RIGHT CHOICES.
Darlene Putz, May 2012

Industrial markets are ready to take advantage of direct to product decorating - printing to substrate. When is it time? Now is the time. The advantages are numerous: Inventory Reduction - on demand printing, Personalization - adding a new product level to current product line and added value to increase the bottom line, Green - very little waste and numerous recycling programs for consumable items. With advantages being clear, moving into the digial printing world requires a little preparation. Starting with how to select the appropriate printer from printhead selection to ink delivery system, ink selection, down to software. All key components in successfully moving into digitally printing. With a range of printing platforms from flatbed printers, high speed single pass systems to multipass systems - there is a solution for all decorating types. Taking the process step by step, being knowledable about the systems available and asking the right questions will put your company on the path to successful digital decoration in the production environment.

GAS PERMEABILITY OF POLY (4-METHYLPENTENE-1) IN A CONFINED NANOLAYERED FILM SYSTEM
Guojun Zhang, A. Hiltner, Eric Baer, May 2012

Layer multiplying coextrusion was used to create nanolayered films of Poly (4-Methylpentene-1) (P4MP1) against syndiotactic Polystyrene (sPS). This paper investigates the crystal orientation of P4MP1 confined by sPS and examines the confinement effect on the multilayered film oxygen permeability. Demonstration of the confined P4MP1 layers can crystallize as in-plane lamellae bundles was characterized by microscopy and x-ray spectroscopy. A result of the in-plane bundle crystallization of 4MP1 was the formation of aligned open channels in P4MP1 crystals perpendicular to the film surface. This structure novel crystal structure reduces the tortuosity for gas transport through the film, which was verified by measurements of increased oxygen permeability tested by a Mocon Oxygen unit.

IMPROVING PACKAGE TRACEABILITY, MARKETABILITY, AND SUSTAINABILITY WITH DIGITAL DECORATING
Chris DeMell, Chris Sobasze, Amy Swab, May 2012

The advent of piezo-based digital decorating enables marketers to deliver variable data, high impact graphics, and micro-targeted marketing with a single technology. Date coding, lot coding and traceability- back to the product’s origin- are now possible, enabling companies to satisfy increasingly stringent FDA requirements. And with no changeovers needed, marketers can economically create regional or store-level campaigns, delivering unique messages to minute market segments. Those messages are certain to pack a punch with near photographic quality images. Better yet, direct-to- package printing improves sustainability by eliminating labels, films and other consumable materials.

PHYSICAL VAPOR DEPOSITION AND UV CURABLE COATINGS
Jason T. Eich, Eileen Weber, Phil Abell, Kristy Wagner, Chris Mack, May 2012

Environmental concerns with traditional chrome plating continue to expand. Parts finishers worldwide are searching for alternative that provides the visual appearance and durability of chrome plate, but without the environmental side effects and costs associated with this decades old process. “Chrome look” processes and coatings for decorative and automotive lighting PVD applications have been used in the UV curable coating industry for over twenty years. As development of UV curable coatings for PVD has progressed, so has the understanding of the PVD process and its unique capabilities and applications. This paper will address the current chrome plating process, advantages of PVD as chrome alternative, challenges associated with the various steps and layers of PVD applications, and suggestions for successful implementation of UV/PVD systems.

WIRELESS DEVICES DECORATED USING NON-CONDUCTIVE VACUUM METALLIZATION (NCVM) TECHNIQUES: CONSIDERATIONS AND COMMON FAILURE MODES
B. Varkey, Y. Huang, D.A. Wasylyshyn, May 2012

The Non-Conductive Vacuum Metallization (NCVM) process has become a mainstream metallization technology to achieve metallic like appearances on the surfaces of plastics used in wireless electronic devices while maintaining radio frequency (RF) functionality of the internal antennas. The impact on device performance and reliability of NCVM coatings has been discussed based on the most common failure modes and industrial testing standards. This paper discusses the effects of environmental conditions as well as construction variation of NCVM systems as they relate to various customer- impacting failure modes such as discoloration/corrosion, delamination and RF interference.

EMERGING FIBER LASER TECHNOLOGY FOR MARKING PLASTICS
Scott R. Sabreen, May 2012

Ytterbium Fiber Lasers are transforming laser marking of plastics. For the proper application, superior results can be achieved versus Nd:YAG and Vanadate marking lasers. However, fiber lasers are not direct replacements without thorough evaluation, and not all lasers are created equal. The metric for beam quality is M2. The smaller the M2 value, the better the beam quality, whereas M2 = 1 is the ideal laser beam. A laser with superior beam quality can be focused to a small spot size, which leads to a high energy density which is, for many applications, desirable or even required. Such is the case for many thermoplastics including POM Acetals such as Delrin. Fiber lasers are considerably less expensive to procure with zero consumables, only electricity. Further, these lasers are a “Greener” technology than YAG or Vanadate.

PVC REPLACEMENT IN RF MEDICAL DEVICE PLASTICS WELDING
Tom Ryder, May 2012

This paper will provide an overview and options for plastics sealing/welding, and also the limitations of each heat sealing method. Further discussion will focus specifically on radio frequency (RF) welding. Next, this presentation will cover the trends toward eliminating PVC, specifically in the medical device industry. Tom will discuss various ways to eliminate both PVC and PU, using RF welding techniques. Finally, the presentation will cover medical device clean room best practices and the FDA and regulatory requirements in plastics welding of medical equipment, supplies or devices.

PREPARATION OF INTERCALATED ORGANIC/INORGANIC HYBRIDS VIA IN SITU SYNTHESIS
Lichen Xiang, Matthew F. Milner, Jarett C. Martin, Cara S. Southworth, Cody A. Gummelt, Luyi Sun, May 2012

Nanostructured organic-inorganic hybrid materials, including polymer nanocomposites, layer-by-layer assembled thin films, have been extensively investigated over the past two decades and have found wide applications owing to their excellent performance. Either regular polymer nanocomposites or layer-by-layer assembled thin films are typically prepared using pre-synthesized nanofillers/nanoplatelets. Here, we report a new approach to prepare nanostructured hybrid materials via in situ synthesis of nanoplatelets within the polymer/monomer matrix. Alpha-zirconium phosphate (ZrP) was synthesized in a solution system containing a polymer (such as polyethylene glycol, PEG) or monomer. During the synthesis of ZrP, PEG chains were embedded into the ZrP interlayer space, leading to a larger interlayer distance, which is similar to the intercalated layered compound. Proper formulation ratio proved to be critical to avoid forming pristine ZrP, and avoid interfering the growth of the layered structure of ZrP. It has also been found that longer polymer chains are desirable for minimizing the formation of pristine ZrP, but would not affect the interlayer distance. All the PEG chains are perfectly parallel to the layer planes. Besides polymers, many other molecules have also been successfully embedded into the interlayer space to form an intercalated structure during in situ synthesis.

EXPERIMENTAL STUDY ON RUBBER-ASSISTED EMBOSSING OF MICRO FLUIDIC CHIPS
Danyang Zhao, Tom Wyatt, Donggang Yao, Minjie Wang, Allen Yi, May 2012

A flexible micro fluidic chip is difficult to fabricate using the standard hot embossing technology. In this study, rubber-assisted embossing of a micro fluidic chip was investigated. A thin polymer film was thermoformed into microchannels by rubber as soft counter-tool. Different processing conditions, as well as material selections, affecting the thickness uniformity and replicated depth were examined. A flexible micro fluidic chip was fabricated via sealing the microchannel with a layer of transparent adhesive film. A droplet of colored water flowing into the microchannel fast and steadily was observed. Experimental results indicated that the microchip had a uniform channel and good leak tightness. The proposed method demonstrated the ability of fabricating a flexible 3-D microchannel.

DIRECT FABRICATION ON THE POLYMER SURFACES BY USING PRECISION TOOLING MACHINE AND CHARACTERIZATION OF HYDROPHOBICITY AT VARIOUS ROUGH SURFACES
Donghui Chu, Akihiro Nemoto, Hiroshi Ito, May 2012

This report described the hydrophobicity of polymer surfaces, PMMA and polycarbonate. Micro-sized pillar type structures were prepared by the precision machine which could precisely fabricate the various rough surfaces on the polymer surfaces. We considered the geometric parameters, x/d and z/x, to find the factors affect of wettability. The volume of water droplet intruded in pillar spacing affected to increase the hysteresis. Furthermore, the air-pocket formed in solid-vapor contact line was attributed to reduce the hysteresis. We also demonstrated the effect of the surface defect through the ductile polymer, polycarbonate. The polycarbonate surfaces showed higher sliding angle than PMMA, which caused the surface defect pinning with water droplet.







spe2018logov4.png
Welcome Guest!   Login

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers, ISBN: 123-0-1234567-8-9, pp. 000-000.
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net