The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.
The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?
Eberhard Grünschlos, María del Pilar Noriega, May 2012
Actual screw design software is capable to simulate the performance of a single screw extruder based on elaborated program codes. The aim of this work is to present improved approximations in relevant thermal properties for simulation and design of single extrusion screws in combination with analytical calculations appropriate for the industrial praxis. The developed approximation functions for thermal properties, such as, specific heat capacity, enthalpy, thermal conductivity and density, were obtained looking for small number of parameters. A comparison between the improved approximation functions, existing known functions and measured data for some common polymer families is shown.
Sepehr Ravati, Christine Beaulieu, Louise Deschênes, Viêt Cao, Basil Favis, May 2012
Polylactic acid (PLA) and polyhydroxybutyrate (PHB) are two of the most important polymers derived from renewable resources. In this work, the morphology and physical properties of binary blends of PLA/PHB and multi-component blends of PLA/PHB with other commodity polymers such as polystyrene (PS) or biodegradable polymers such as polycaprolactone (PCL), poly (butylene succinate) (PBS), and poly(butylene adipate-co-terephthalate)(PBAT) were examined. Completely biodegradable blends of PLA/PHB/PBAT/PCL and PLA/PHB/PBAT/PBS demonstrated some unique morphologies including triple percolated systems.
PBS (Poly(butylene succinate)) is a promising emerging bioplastic with good strength and modulus, however, its elongation at break (EB) is quite low and blends with higher EB materials are a potential route to develop more balanced properties. Blends of PBS with biodegradable polymers including polycaprolactone (PCL), poly(butylene adipate-co-terephthalate) (PBAT), and poly(lactic acid) (PLA) were studied. These blends result in fully-biodegradable blends with completely different thermodynamically stable wetting behaviors and hence, significantly different potential morphological states.
Three-dimensional finite element method (FEM) parametric study was performed to investigate the effect of surface friction on scratch-induced deformation. By varying the post-yield behavior of the polymer substrate, the effect of surface friction on scratch depth and its correlation with the strain hardening slope is sought. The simulation results indicate that the onset of groove formation during the scratch process is strongly influenced by surface friction. Also, increase in strain hardening slope reduces the relative frictional effect on scratch depth.
The simulation of thermally and flow induced crystallization behavior of semi-crystalline polymers is of great engineering significance in polymer processing like injection, blow molding and extrusion. However, its key technology for practical application remains to be difficult. In the study, the mathematical model of three- dimensional thermally and flow induced crystallization of polymer melts obeying Phan-Thien and Tanner (PTT) constitutive model is established. A penalty finite element/finite difference method is introduced to solve the nonlinear governing equations. The computation stability is improved by using the discrete elastic-viscous split stress (DEVSS) algorithm incorporating the streamline upwind scheme. A modified Schneider’s approach is employed to discriminate the relative roles of the thermal and the flow state on the crystallization phenomenon. Two driving causes for the crystallization of polypropylene in extrusion process including the thermal and the flow state are investigated. Both the crystalline distribution and crystalline size of polypropylene are obtained based on the proposed mathematical model and numerical scheme.
Ahmed Rahman, Rahul K Gupta, Sati N. Bhattacharya, Shishir Ray, Franco Costa, May 2012
Liquid Crystal Polymers (LCPs) are advanced high temperature processing polymers with unique physical properties. It contains rigid rod like molecules, which exhibit structural orientation during the flow process at one or two dimensional level. Rheological behaviour of unfilled LCPs and filled (glass fibre) LCPs were characterized with ARES and Capillary rheometer at low and high shear rates. The complex viscosities (h*) as well as shear viscosities (h) showed a typical shear- thinning behaviour. LCPs exhibit anomalous rheological behaviour with shear and temperature. Viscosity reduced at low shear rate region because of the tumbling nature of rod like molecules. The abnormal temperature dependence of the viscosities can be explained by the transition of anisotropic rod-like molecules to isotropic molecules with increase in temperature. In steady shear flow, it was observed that rotational transformation occur from direction of flow to surface direction, which leads to first negative normal stress difference (N1) with shear rate. Stress relaxation conducted after cessation of shear flow to prove the molecular dynamics. Multiple overshoot observed due to tumbling, which was varying with temperature and shear rate.
Tri acetyl cellulose (TAC) is not a good material for the chain stretching due to its main chain rigidity. Plasticizers were introduced to increase the chain flexibility and the effect of plasticizer on physical properties of TAC film was studied. The lowering of glass transition temperature, melting temperature and crystallinity were found and this was understood that plasticizer provided the main chain mobility by reducing interaction between TAC molecules. These made possible to stretch the TAC chain under low stretching temperature and resulted in the development of birefringence in TAC film which indicated the characteristic of retardation film
Xiangsong Kong, Shengqiang Zhu, Yi Yang, Zhijiang Shao, Xi Chen, Lingyu Zhu, May 2012
Quality is the key to injection-molded plastic optical lenses. To improve the lens quality, a systematic model-free optimization (MFO) method is proposed to minimize the part quality subjected to specified range of focal length. Rather than building a model to correlate the relations between process variables and quality variables, this method online optimize the process by directly using the measurement for function evaluation. An iteration termination control methodology is developed and integrated for the quality optimization. The effectiveness of the MFO has been demonstrated through experiments.
From micro featured optical products made by conventional injection molding(CIM) the defects of inhomogeneous shrinkage and incomplete filling of micro pattern can be found easily because of concentrated residual stresses near gate and the formation of frozen layer. To reduce the inhomogeneous shrinkage in thickness direction injection/compression molding(ICM) can be used by applying compression of mold rather than applying packing pressure through the gate. To achieve better transcription of micro pattern on the product from the mold rapid heating and cooling molding(RHCM) has shown the advantages by heating the mold surface above glass transition temperature of polymer used. In the present study a series of experiments using ICM combined with RHCM named RICM(RHCM+ICM) was conducted to increase both the transcription ratio of micro pattern and the uniformity of thickness for 7 inch sized BLU-LGP(Backlight unit-light guide plate). As a result, the standard deviation of thickness was reduce from 0.024(ICM)~0.025(RHCM only) mm to 0.005(RICM) ~0.007(ICM) mm by apply compression process. In the cases of CIM and ICM average transcription ratio of micro pattern showed 42.0% and 63.2%, respectively. On the other hand, the transcription ratio of micro pattern in the cases of RHCM and RICM showed almost 100% while the mold temperature reached above glass transition temperature. By the application of ICM combined with RHCM both the transcription ratio of micro pattern and the uniformity of thickness can be improved dramatically even the maximum mold temperature of RICM was 10°C lower than the case of RHCM only.
In this study, the aliphatic or aromatic isocyanates and poly-alcohols was used to synthesize polyurethane with shape memory function, which the polyol was derived from the biomass polylactic acid (PLA). The recycled PLA was degraded into the low molecular weight PLA (Mw 1,000) and the chain extension agent (1,4-butanediol, BDO) reaction was added to form biomass polyol. The analysis of Fourier transform infrared spectroscopy (FTIR) and Gel permeation chromatography (GPC) were proved the synthesis of polyol. The recovery ratio of shape memory and mechanical properties of polyurethane were improved significantly due to the urea structure, the biomass polyurethane with shape memory could be increased up to 95% of recovery ratio. Different isocyanate (hexamethylene diisocyanate, HDI, or 4,4- diphenylmethene diisocyanate, MDI) were compared and found that the functional group of aromatic was better than that of aliphatic in the synthesis of polyurethane with shape memory behavior.
As a typical batch process, injection molding has the following unique features compared to traditional continuous processes: repeatability, two-dimensional dynamics and stages based operations. A sophisticated control algorithm shall exploit all these features. In this paper, a systematic two-dimensional model predictive iterative learning control algorithm is introduced to control the injection molding process with the injection velocity as an application example. The experimental results prove that the control algorithm has good performance and robustness.
C. Chau, J. Williams, S. Solovyov, T. Powers, P. Koch, May 2012
Polylactic acid and polypropylene were melt blended and extruded into 3-10 mil films. Differential scanning calorimetry studies showed the polymer blends, unlike the neat PP and PLA materials, exhibited crystallization exotherm in heating scans with a crystallization point varied with the ratio of PLA to PP. This melt crystallization behavior was enhanced with the increase of the content of PLA from 25 to 75%. The polymer blends also showed multiple melting points ranging from approximately 140 to 175°C depending on the ratio of the two polymers and the heating rate. The formation of a new crystallization temperature, the shifting of the melting points, and/or the formation of new melting points suggested some compatibility between PP and PLA. Upon uniaxial stretching, the originally translucent films showed strong stress-whitening phenomena with widespread porous structure developed in the whitened region. SEM showed fibrils with a typical diameter of 2 micron and voids or pores of approximately 5 micron developed in the whitened region. The partial compatibility between PLA and PP could have contributed to the homogeneity of the stress-whitening and the porous structure in the film. The porous films provided two folds or higher increase in oxygen transmission rate depending on the material composition and draw ratio. The structural development and the potential use of the porous PLA/PP films in packaging application are discussed.
Farid Bourennani, Jamal Alsadi, Ghaus M. Rizvi, Daniel Ross, May 2012
Nowadays, most manufacturing companies store their data electronically. The selection of the appropriate data mining algorithm for exploration of this data can quickly identify issues leading to process improvement and cost reduction. In this paper, The Decision Tree Classifier (DTC) is used for plastic color mismatch parameters analysis. Especially, the relationship between polymer grade, color, type, line of production, and ingredients supplier is analyzed. DTC Results showed interesting and evident relationships between certain parameters.
Ping Fan, Lei Wang, Feng Chen, Jingtao Yang, Mingqiang Zhong, May 2012
Poly(vinylidene ?uoride) (PVDF)/graphene composite was successfully fabricated by a solution-cast and hot- pressing method. The composite material with graphene as conductive ?ller exhibited a very low percolation threshold (0.0018 volume fraction), but the dielectric constant was enhanced signi?cantly. The largest dielectric constant of 7940 was observed for the PVDF/graphene composite with 0.0177 graphene volume fraction at 100 Hz. Large enhancements of the ac conductivity and loss tangent were also observed for the composites with graphene content near the percolation threshold. The percolation theory was used to explain the dielectric behavior of the composite.
Alvaro Arnez, Luis González, Francisco Aranda, Carlos Jasso, May 2012
A semicontinuous process was used to prepare copolymers varying the feed composition profile, to vary in a gradual manner the composition of the copolymer chains being formed through an emulsion reaction, for the (50/50, w/w) styrene/butyl acrylate system. With the cumulative composition of the copolymers (1H-NMR), the weight distribution of chains composition (WCD) was estimated, constructing a histogram that is used to elucidate the mechanical behavior (DMA, stress-strain and, impact strength) of the synthesized copolymers.
Akinori Iguchi, Hideo Hirabayashi, View Paper
Kazushi Yamada, Hiroyuki Nishimura, Yasuhiro Uchiyama, Jyunpei Kojima, May 2012
To expand use of photovoltaic generation, there is a real need for reducing cost of generating by photovoltaic panels. One of cost-cutting of power generation is to prolong its service life. It is very important to prevent moisture from penetrating the back-sheet for insuring the long-life operation of photovoltaic panels. In this study, the correlation was evaluated between mechanical property and partial discharge of degraded polyethylene terephthalate film for the back-sheet.
Baris Yalcin, Steve E. Amos, Troy K. Ista, DS Park, Marcel Doering, Stefan Friedrich, Takijurou Yamabe, Sedat Gunes, May 2012
Reducing the weight of thermoplastics and rubber parts has been a paramount objective in various industries such as transportation, aerospace, hand-held electronics and sports and leisure. 3M ™ Glass Bubbles (hollow glass microspheres) are light weight micro additives specially engineered to withstand temperature, stress, and deformation gradients in a wide range of polymer processes ranging from liquid phase polymer processing to high viscosity melt compounding and high pressure injection molding. We will present factors influencing glass bubble survival and discuss processing methodologies to achieve the highest level of bubble survival for a given polymer grade, specifically during twin screw extrusion compounding and injection molding. We will then analyze application examples and demonstrate how the plastics industry and associated OEMs can exploit the light weight advantages of these novel additives while improving the processing and end-product properties without resorting to costly equipment modifications.
Sung-Bin Cho, Chang-Hyun Park, Dong-Hoon Choi, Byung-Gi Pyo, Byung-Ohk Rhe, May 2012
Injection pressure, an important factor in injection molding process, should be minimized to enhance injection molding quality. In this study, we decided the locations and open timings of valve gates to minimize the maximum injection pressure. To solve this problem, we integrated MAPS-3D (Mold Analysis and Plastic Solution-3Dimension), a commercial injection molding analysis CAE tool, using the file parsing method of PIAnO (Process Integration, Automation and Optimization) as a commercial process integration and design optimization tool. In order to reduce the time for obtaining the optimal design solution, we performed an approximate optimization using a meta-model that replaced expensive computer simulations. To generate the meta-model, computer simulations were performed at the design points selected using the optimal Latin hypercube design as an experimental design. Then, we used micro genetic algorithm available in PIAnO to obtain the optimal design solution. Using the proposed design approach, the maximum injection pressure was reduced by 35.1% compare to the initial one, which clearly showed the validity of the proposed design approach
Jungjoo Lee, Lih-Sheng Turng, Eugene Dougherty, Patrick Gorton, May 2012
This paper describes a novel approach to achieve swirl-free foamed plastic parts using the microcellular injection molding process. With a better understanding of the cell nucleating behavior, which is governed by the degree of supersaturation, one can delay the onset of cell nucleation during mold filling, thereby allowing a solid skin layer to form on the part surface prior to foaming. The theoretical background of this approach as well as the experimental results are presented.
Sherly Paul, Harsha B, Vidya V, Asworthy R, May 2012
Banana microfibrils were prepared from banana fibre obtained from the pseudo stem of the banana plant by steam explosion process. Alkali and acid treatment coupled with high pressure defibrillation was found to be effective in the depolymerization and defibrillation of the fibre to produce the microfibrils. The different stages of steam explosion process were studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Atomic Force microscopy studies (AFM) revealed that the surface of the microfibrils were rough. The prepared micro fibrils were subjected to chemical treatments with potassium permanganate (KMnO4) and benzoyl chloride. Low density polyethylene (LDPE)/microfibril composites were prepared by injection molding. The dielectric and mechanical properties of composites and chemically treated microfibril composites were investigated. Dielectric constant of LDPE/microfibril composite was found to be greater that of neat LDPE. Chemical treatments reduced the dielectric constant of the composite. The mechanical properties were found to be increasing upto 20% microfibril loading. Chemical treatments further enhanced the mechanical properties of the composite.
Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:
Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.
Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.
This site uses cookies to recognize members so as to provide the benefits of membership. We may also use cookies to understand in general how people use and visit this site. Please indicate your acceptance to the right. Learn More..