SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library
Keyword/Author:
After Date: (mm/dd/yy)  
 
Sort By:   Date Added  ▼  |  Publication Date  ▼  |  Title  ▼  |  Author  ▼
= Members Only
Conference Proceedings
Recent Advances in Class A Polyurethane Long Fiber Injection (LFI) Composites
Usama Younes, September 2009
Recent advances in related polyurethane chemistry have increased the commercial viability of the long fiber injection (LFI) process for producing very-large composite parts such as entry-door skins truck body and spa panels and recreational boat hulls. These advances enable the LFI process to achieve previously unattainable extended gel times on an open hot mold retain a relatively short demold time and form defect-free surfaces that can lead to the Class A surfaces required for large automotive body panels.
Composite Power-Train Components: Reducing Warranty Costs & Improving Part Quality
Toai Ngo & Mayur Shah, September 2009
Sheet-molding compound has been used in underhood applications and is extending its reach to drivetrain components. This presentation will show how vehicle manufacturers have reduced costs and improved quality through product designs that eliminate hardware enhance capability and improve system performance.
Automotive Composites Consortium Structural Composite Underbody
Libby Berger, September 2009
The Automotive Composites Consortium Focal Project 4 (ACC FP4) is a joint program between GM Ford and Chrysler to develop structural automotive components from composite materials. Part of this project is a structural composite underbody capable of carrying crash loads. Phase 2 of the project involves a full design of the underbody including design for durability and feasible component manufacturing and vehicle assembly scenarios.
BMC Composites: High Value Metal Replacement Material Alternative for Automotive Powertrain Applications
Jim Cederstrom, September 2009
Performance requirements for underhood components are increasing making historically used thermoplastics unsuitable for next-generation engines. The need for higher thermal chemical and mechanical resistance is opening the door to thermoset bulk-molding compounds (BMC) for critical metal-replacement opportunities successful examples of which will be presented.
Application of Digimat Micromechanical Modeling to Polymer Composites
Peter Foss, September 2009
DIGIMAT micromechanics-modeling software was evaluated to predict the nonlinear stiffness and strength properties of glass-filled nylon. In this particular case due to the high aspect ratio of the fibers the properties of reverse engineered effective actual matrix properties were needed to accurately correlate both the matrix" rather than theflow and transverse to flow stress-strain behavior."
Advanced Simulation of Fiber-Reinforced Automotive Radiator End Tanks by Capturing Anisotropic Material Properties
Suresh Shah, September 2009
This study aims to capture realistic anisotropic properties of a plastic material in a structural analysis. Moldflow software has been used to obtain the fiber-orientation details for a plastic radiator tank. This fiberorientation output data have been transferred to the structural analysis software (ABAQUS using commercially available interface software (DIGIMAT). This integrated simulation technique helps in accurate prediction of burst pressure strength of the plastic tank.
Material Characterization & Modelling of Long Glass-Fiber Composites
Matthew Marks, September 2009
Modeling the stiffness of parts injection molded from long-fiber materials is similar to yet different from behavior using short-fiberfilled materials. This work discusses the effects of various modeling assumptions and methods on stiffness predictions using a coupled Moldflow-Digimat-Abaqus analysis methodology.
Fatigue Properties of Injection Molded 33% E-Glass Fiber Reinforced Polyamide-66
Shivanand Sankaran, September 2009
This paper presents the effects of melt temperature injection pressure hold pressure and injection speed on the tensile and fatigue properties of 33-wt% E-glass fiber-reinforced polyamide-66. It was observed that these process parameters had a greater influence on the fatigue properties than on the tensile properties. Melt temperature had the greatest effect followed by injection pressure. Both hold pressure and injection speed had smaller but significant effects on the fatigue life.
Identification Selection & Development of Composite Test Standards - A Case Study from the Development of a Design Standard for Composites
Ellen Lackey, September 2009
This paper examines the identification selection and development of appropriate composite test methods as required in the composites design process. Examples from the development of a load and resistance factor design (LRFD) standard for pultruded composites are presented. The issues addressed for this case study discussion are applicable to any segment of the composites market that is looking to establish design procedures or develop design standards.
Study of Braided Composites for Energy Absorption
Andy Rich, September 2009
The goal of this research project was to provide data to build FEA tools and to improve the understanding of braiding technology in order to expand predictive abilities for post-yield behavior of carbon fiber products braided with multiple hybrid fibers.
Mesoscopic Finite Element Simulation of the Compression Forming of Sheet Molding Compound Woven-Fabric Composites
James Sherwood, September 2009
This paper describes a mesoscopic approach of using beam and shell finite elements to model the forming of composite parts using an SMC woven fabric. Nonlinear constitutive models are implemented in ABAQUS/Explicit via user-defined material subroutines to describe the shear and tensile mechanical behavior of the woven fabric. Both single-ply and multiple-ply layups are modeled.
An Investigation of ‘Green’ Class-A SMC
Thomas Steinhäusler, September 2009
Saturated- and unsaturated-polyester resins containing glycols made from renewable or recycled sources are being developed as a way to become less dependent on petroleum-based glycols. In this study SMC performance of standard-density Class A automotive SMC containing polyester resins produced from petroleum-based glycols was compared to standard-density Class A automotive SMC containing polyester resins produced from renewable-source glycols. The evaluation included processing aesthetics and adhesion performance. Finally a new low-density Class A automotive SMC containing polyester resins produced from renewable-source glycols will be introduced.
Bio-Based Polymers from Soy Chemistry
Dwight Rust, September 2009
Research on the use of soybeans to produce polyurethane polyols unsaturated polyester resins and thermoplastic fibers has been funded by the United Soybean Board (USB). The USB funds a wide range of activities including research and development of new industrial products made from soy. These developments have resulted in new patented technology. Commercialization of this technology has resulted in the production of unsaturated-polyester resins for fiberglass-reinforced composites and urethane polyols for polyurethane foams. The commercial applications of these bio-based polymers are found in a wide range of applications in the transportation markets.
Epoxy Thermosets Modified with Novel Nano-Scaled Self-Assembled Block Copolymers: Toughening Mechanisms and Extension to Composites
Nikhil Verghese, September 2009
A unique approach to toughening thermosets has been identified by introducing small amounts of amphiphilic block copolymer. The result is a good viscosity-Tg-toughness balance. In this work the fracture behavior of these modified epoxies was carefully studied in an attempt to understand the toughening mechanisms that exist. The findings suggest that cavitation in even these nano-sized spherical micelles is the primary mechanism of toughening. These findings were also found to be a strong function of the cross-link density of the host network with higher levels of plastic deformation at the crack tip being observed in the low-cross-link density systems. Glass-fiber-reinforced composites made with epoxies modified with these toughening agents were found to have improved fatigue resistance.
Zero-Emission Acrylic Thermoset Technology
Gero Nordmann, September 2009
In today’s environment there is an ever-increasing desire to ‘circle the square’ reaching high-performance durability light weight and manufacturing flexibility without increasing and even trying to lower overall system costs. This presentation will discuss a new enabling technology platform engineered towards these ends: cross-linked thermoset acrylics. These are non-flammable zero-emission systems that contain no volatile or hazardous components at any stage of their life cycle. They are easy to use in molding processes and ideally suited for today’s ‘greener’ lightweight automotive composites. Their application in natural fiber composites will also be outlined in the presentation.
Long-Fiber Reinforced Thermoplastic LFT-D & Thermosetting D-SMC Processes for Lightweight Parts Production - Trends & Recent Applications
Heinrich Ernst, September 2009
The direct process of producing long-fiber-reinforced thermoplastics (LFT-D) is highly innovative and economical for producing semi-structural and structural components as well as cosmetic parts with grained surfaces. The advanced plastic-hybrid developments with tailored LFT and E-LFT technologies fulfill crashworthiness requirements. Similiarly the direct processing of fiber-reinforced thermosetting materials – direct strand molding compound (D-SMC) – is focused on the reproducible manufacturing of the compound resulting in a constant part production at a high level minimizing material costs and expensive post-mold operations and paint processes as well as reducing logistical costs. The high flexibility in composing the recipe in selecting the resins fillers and reinforcements result in the high degree of freedom of this process.
Development of an Adhesive-Primer for Polypropylene Composites
David Trudel-Boucher, September 2009
Joining is often one of the critical steps in the fabrication of composite products. However the low polarity and inert characteristics of polypropylene composite surfaces cause many problems in the assembly of these composites with dissimilar materials. In order to overcome the adhesion issues an epoxy-based primer was developed and the compatibility of several commercial adhesives with the primer was evaluated. Results showed very-good lap-shear strength of up to 15 MPa with substrate failure. The performance of the primer was also evaluated between -30 and 80°C and after conditioning in humidity. While lapshear strength decreased with increasing temperature it remained unchanged after conditioning. Finally different practical approaches to apply the primer film to a polypropylene continuous-fiber composite were investigated including techniques to apply the primer during and after composite consolidation.
Electrically-Heated Moulds of CRP Composite Materials for Automotive Application
Herbert Funke, September 2009
The moulding system FIBRETEMP describes a procedure to heat moulding surfaces efficiently with a consistent distribution of temperature. The heart of this invention the use of carbon fibres to conduct electricity as well as integrating the heating element and the structure within the surface to be heated. These moulds are highly energyefficient and extraordinarily dimensionally stable while also being produced at low cost. This technology has already been proven in manufacturing composite parts and has nearly halved cycle time for some applications due to its efficient heating characteristics.
Fatigue & Vibration Response of Long Fiber Reinforced Thermoplastics
Uday Vaidya, September 2009
While numerous advances have been made in the manufacturing methods of long-fiber thermoplastics (LFTs) their dynamic response in terms of fatigue and vibration damping has been a subject of limited study. There is presently no standardized design information for a composites / automotive designer for use of LFTs in situations of longterm fatigue and vibration. The behavior of E-glass fiber / polypropylene LFT composites has been characterized for their fatigue behavior and vibration response in the present study. The work provides an understanding of the influence of extrusion / compression-molded long fibers and the fiber orientation that is generated during their processing. Results will be useful to designers in accounting for fatigue life and damping factors.


This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.




spe2018logov4.png
  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net