The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.
The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?
High density polyethylene (HDPE) is widely used to
fabricate blow molded articles for rigid packaging as well
as for other market segments such as industrial and
chemical containers automotive home and recreation.
The drive to reduce packaging cost as well as minimize
impact on the environment has increased the emphasis on
light weight packaging. A next generation (NG) of HDPE
resins was developed through selective molecular
architecture modification to offer a unique combination
of easy resin processing on existing extrusion blow
molding equipment and a superior balance of physical
properties which allow blow molded articles to be light
weighted. A higher percentage of post consumer recycle
can also be incorporated while meeting the blow molded
article performance requirements.
Minoru Ogasahara, Manabu Shidou, Shigeru Nagata, Hiroyuki Hamada, Leong Yew Wei, May 2010
Simulation of single-screw extruder screws using the standard pseudo-Newtonian method is known to deviate from measured performance. Part of this deviation is caused by the calculation of the drag flow rate. Previous research has shown that the calculation of the drag flow rate using this method is higher than that in the actual channel, causing the pressure gradient to be incorrectly adjusted to compensate for the error in the drag flow term. The research provided here provides the correction factors for rotational flow (historically known as drag flow) such that axial pressure gradients can be quickly and accurately calculated.
Minoru Ogasahara , Manabu Shidou , Shigeru Nagata , Hiroyuki Hamada , Leong Yew Wei, May 2010
The improvement of Intrinsic Viscosity of recycled
poly(ethylene terephthalate)(R-PET) pellets by an
industrial radio frequency(RF) heating is described. RPET
pellets are made from post-consumer PET bottles
degraded by hydrolysis during distribution process.
Hence intrinsic viscosity(IV) or molecular weight of RPET
exhibits significant lower compared to virgin PET
caused from cleavages of chains. This study evaluates the
feasibility of RF Heat Treatment to improve the intrinsic
viscosity of the material.
S. Vázquez-Rodríguez , V. A. González-González , R. Benavides-Cantú , E. M. Arias-Marin , I. Moggio, May 2010
New conjugated oligomers have been
synthesized through aldol condensation from chemical
reaction between different kinds of ketone and aromatic
dialdehydes. These novel compounds showed absorption
in UV-vis spectrum from 275 to 525 nm. In this work we
reported the synthesis of an organic compound prepared
by reaction of dimethyl sulfoxide (DMSO) and
terephthalaldehyde (TPA) following a typical aldol
condensation route. The luminescent adduct was mixed
with polyvinyl chloride (PVC) in solution (in THF). Films
of PVC-adduct were evaluated in a degradation chamber
and changes in chemical structure were evaluated by
FTIR in where an increase of carbonyl band was larger
than control sample. This new compound can be used to
promote degradation of PVC under UV radiation.
S. Vázquez-Rodríguez , V. A. González-González , R. Benavides-Cantú , E. M. Arias-Marin , I. Moggio, May 2010
New conjugated oligomers have been synthesized through aldol condensation from chemical reaction between different kinds of ketone and aromatic dialdehydes. These novel compounds showed absorption in UV-vis spectrum from 275 to 525 nm. In this work, we reported the synthesis of an organic compound prepared by reaction of dimethyl sulfoxide (DMSO) and terephthalaldehyde (TPA), following a typical aldol condensation route. The luminescent adduct was mixed with polyvinyl chloride (PVC) in solution (in THF). Films of PVC-adduct were evaluated in a degradation chamber and changes in chemical structure were evaluated by FTIR, in where an increase of carbonyl band was larger than control sample. This new compound can be used to promote degradation of PVC under UV radiation
Melt blowing is an extrusion process that produces nonwovens with fine fibers in the 1 to 10 micron diameter range, and finds applications in filtration, sound and liquid absorbency and thermal insulation. Co-extrusion is a process where two polymer resins in the molten state are arranged via feed blocks or layer multipliers to give alternating layers. We have made microfibers that have multiple layers within each fiber and using temperature and pressure have demonstrated that the multi layer microfiber webs can be converted to materials that appear as films but have the internal structure of fibers, which we refer to as filbers. The structure and properties of different type of filber materials have been studied and will be presented.
Simulation of single-screw extruder screws using the standard pseudo-Newtonian method is known to deviate from measured performance. Part of this deviation is caused by the calculation of the drag flow rate. Previous research has shown that the calculation of the drag flow rate using this method is higher than that in the actual channel, causing the pressure gradient to be incorrectly adjusted to compensate for the error in the drag flow term. The research provided here provides the correction factors for rotational flow (historically known as drag flow) such that axial pressure gradients can be quickly and accurately calculated.
A key element in successfully molding high
quality PET (Polyethylene Terephthalate) preforms is the
delivery of molten plastic to each cavity in a rheologically
similar manner. This has been a significant challenge in
light of the shear/viscosity and crystalline behavior of
bottle grade PET in its molten state.
This paper will review the economics of molding
PET preforms the impact of improved performance on
profitability design philosophies for molding PET
preforms and hot runner technologies that are now
available to confront historical issues in the PET preform
molding process. These new technologies applied to
molding PET preforms will help converters improve their
bottom lines.
A key element in successfully molding high quality PET (Polyethylene Terephthalate) preforms is the delivery of molten plastic to each cavity in a rheologically similar manner. This has been a significant challenge in light of the shear/viscosity and crystalline behavior of bottle grade PET in its molten state. This paper will review the economics of molding PET preforms, the impact of improved performance on profitability, design philosophies for molding PET preforms and hot runner technologies that are now available to confront historical issues in the PET preform molding process. These new technologies, applied to molding PET preforms, will help converters improve their bottom lines.
Agricultural mulch films that are used to cover soil of crop rows contribute to earlier maturation of crops and higher yield. Incineration and landfill disposals are the most common means of disposal of the incumbent polyethylene mulch films; these are not environmentally friendly options. Biodegradable mulch films that can be rototilled into the soil after crop harvest are a promising alternative to offset problems such as landfill disposal, and film retrieval and disposal costs. In this study, an in-house laboratory scale test method has been developed in which the rate of disintegration, as a result of biodegradation, of films based on polyhydroxybutanoic acid (PHB) copolymers were investigated in a soil environment using residual weight loss method. The influence of soil composition, moisture levels in the soil and industry-standard anti-microbial additive in the film composition on the rate of disintegration of PHB copolymer films will be discussed.
Dielectrostriction is a rheodielectric phenomenon that relates the variation of dielectric properties of a material with deformation. For an initially isotropic material, two independent material coefficients, ?ñ1 and ?ñ2, are required to describe dielectrostriction in terms of strain. Deformation affects a materialƒ??s dielectric properties in two ways: (a) by introducing anisotropy in the material, which is characterized by ?ñ1; and (b) by changing the volume density of the polarizable species, which is associated with 1ƒ???3?ñ1 + ?ñ2. Purely viscous fluids will remain isotropic during any flow-induced deformation and therefore the coefficient, ?ñ1, is always zero. In this paper, the dielectrostriction effect is studied on viscoelastic materials with varying elasticity. The coefficient, ?ñ1, is measured by a planar capacitance sensor rosette. Also, the relationship between the coefficient, ?ñ1, and the material elasticity is discussed.
Potentially toxic chemicals such as heavy metals
phthalates and halogenated organic compounds are
currently found in many consumer products and are cause
of great concern. The authors employed XRF
methodology in extensive testing for hazardous chemicals
contained in plastic components of over 450 domestic and
imported 2006-2009 model year cars in 130 children’s
car seats and 3 700 (2007-2008) children’s products
including toys. Over 13 000 individual samples are
included in the database. Handheld and non-destructive
X-ray Fluorescence Spectroscopy (XRF) yields data of
most elements at ppm and higher levels with good
correlation to time consuming and destructive traditional
analytical techniques. The presentation of data includes
analysis of trends in the use of brominated flame
retardants (BFRs) PVC lead and heavy metals in plastics
with emphasis on relevance to public health.
Methodologies to translate the test data into a relative
product rating system have been developed and published
for consumer use (see healthytoys.org and
healthycars.org).
Potentially toxic chemicals, such as heavy metals, phthalates, and halogenated organic compounds are currently found in many consumer products and are cause of great concern. The authors employed XRF methodology in extensive testing for hazardous chemicals contained in plastic components of over 450 domestic and imported 2006-2009 model year cars, in 130 childrenƒ??s car seats, and 3,700 (2007-2008) childrenƒ??s products including toys. Over 13,000 individual samples are included in the database. Handheld and non-destructive X-ray Fluorescence Spectroscopy (XRF) yields data of most elements at ppm and higher levels with good correlation to time consuming and destructive traditional analytical techniques. The presentation of data includes analysis of trends in the use of brominated flame retardants (BFRs), PVC, lead, and heavy metals in plastics with emphasis on relevance to public health. Methodologies to translate the test data into a relative product rating system have been developed and published for consumer use (see healthytoys.org and healthycars.org).
As the use of tandem extrusion lines for producing quality structured foams expands, the need for better cooling screws is receiving increased attention. In a tandem extrusion line, the role of the cooling extruder is to homogenize the melt, and to efficiently remove heat from the gas-laden melt, without excessive viscous heat generation. There are a variety of design elements that are commonly applied to cooling screws, but the use of multiple flights is the most common. However, it is not clear how multi-flight configurations lead to better overall performance. This paper presents a numerical study of the effect of multi-flight screw configurations on the homogenizing and cooling of a polymer melt. Various characteristics of the melt flow and heat transfer in multiflight screws are compared to those of a corresponding single-flight design.
Poly(ethylene terephthalate) [PET] from off-gradesof industrial manufacturer was depolymerised usingexcess ethylene glycol [EG] in the presence of metalacetate. Influences of the reaction time volume of EG and catalysts concentrations on the yield of theglycolysis products were investigated. In this study wehad three 3-level factors for reaction time volume ofEG and catalysts concentrations on the basis ofTaguchi's statistical method. The optimal conditionsare reaction time of 3 h molar ratio (EG to PET) of 5 weight ratio (catalyst to PET) of 0.25 wt%. Theglycolysis products were analysed for hydroxyl valueand identified by DSC and VPO. The optimum samplewas used to produce unsaturated polyester resin [UPR]by maleic anhydride [MA]. The samples alsocharacterized well by FT-IR 1HNMR and 13CNMR.
Ronald D. Moffitt , Sandeep Vennam , Bhyrav Mutnuri , Wade DePolo, May 2010
Traditionally pultrusion dies have been fabricated
using conventional machining. However rapid tooling
techniques permit the construction of complex preform
and die cross-sections which may be used to pultrude
interlocking fastenerless joint designs. For rapid
construction of naval structures like ship deckhouses 3-D
printing a rapid prototyping technique was utilized to
develop a new snap fit joint pultrusion die. 3-D printing
required approximately 115 man-hours less than
conventional machining. Furthermore an innovative and
cost effective multi-modular die has been developed and
implemented in manufacturing a snap fit joint for scale
ship deck houses.
Ronald D. Moffitt , Sandeep Vennam , Bhyrav Mutnuri , Wade DePolo, May 2010
Traditionally, pultrusion dies have been fabricated using conventional machining. However, rapid tooling techniques permit the construction of complex preform and die cross-sections, which may be used to pultrude interlocking, fastenerless joint designs. For rapid construction of naval structures, like ship deckhouses, 3-D printing a rapid prototyping technique was utilized to develop a new snap fit joint pultrusion die. 3-D printing required approximately 115 man-hours less than conventional machining. Furthermore, an innovative and cost effective multi-modular die has been developed and implemented in manufacturing a snap fit joint for scale ship deck houses.
The object of this experiment is to investigate the effects of gate design, shear history, processing conditions, and melt rotation on gate blush and tiger striping. The part being molded and examined is a .101 meter impact disk. The parts were measured using a visual measurement system based on the quality of the surface finish. The materials in question are TPE, PC/PET blend, PC/ABS blend, and Acetal. Shear history increases gate blush on molded parts. Injection velocity alters tiger striping while a low melt temperature eliminated tiger stripes on the part.
Robert Lee Browning, Han Jiang, Yishu Song, Hung-Jue Sue, Motoko Ito, Mikihiko Fujiwara, Anthony Gasbarro, May 2010
Reactions were performed between a low molecular weight, highly functionalized polyethylene and a polyetherdiamine, in a resin kettle and a melt blender. In both cases, a one-component reactive prepolymer was formed. The prepolymer converted into a thermoset on subsequent melt processing at elevated temperatures. The low viscosity of the starting materials and the reactive prepolymer allows mixing and molding of these materials using equipment that works at significantly lower shear and pressures than conventional extruders and injection molding equipment.
Robert Lee Browning , Han Jiang , Yishu Song , Hung-Jue Sue, May 2010
In the field of tribology, scratch, mar and abrasion are often misconstrued as interchangeable terms. Using the current state of the art as a basis, a new testing methodology has been devised that allows abrasion resistance to be evaluated and defined in a unique way.Model thermoplastic olefins with 'good' and 'poor' surface damage resistance were tested for abrasion resistance using an adaptation of a standardized scratch testing methodology. It will be shown that changes in gloss and surface roughness show a positive physical correlation. Novel software for automatic tribological analysis will also be introduced.
84 countries and 60k+ stakeholders strong, SPE
unites
plastics professionals worldwide – helping them succeed and strengthening their skills
through
networking, events, training, and knowledge sharing.
No matter where you work in the plastics industry
value
chain-whether you're a scientist, engineer, technical personnel or a senior executive-nor
what your
background is, education, gender, culture or age-we are here to serve you.
Our members needs are our passion. We work hard so
that we
can ensure that everyone has the tools necessary to meet her or his personal & professional
goals.
Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:
Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.
Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.