The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.
The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?
Ali Shaito, Nandika Anne D’Souza, Debora Fairbrother, Jerry Sterling, May 2006
Creep and tensile properties of LLDPE and LLDPE nanocomposite balloon films are studied. Tensile and creep tests were conducted at a range of temperatures. Creep results were fit to the Burgers model. The results indicate that nanocomposites based on the use of maleated polyethylene incorporation into the base polyethylene and montmorillonite layered silicate (MLS) composite have higher mechanical properties.
The properties of PEMs with SXLPS particles dispersed and aligned in a crosslinked PDMS matrix were examined. Included in this study was the influence of SXLPS quantity and size on the water and methanol uptake, and on methanol permeability. In addition, the state of water linked with the SO3H groups was examined.
This study explores the crystallization dynamics of polypropylene-clay nanocomposites. Calorimetry and optical microscopy tools are employed to study the effect of nanoclay on quiescent crystallization kinetics. While a mini-extruder, designed to apply a shear pulse, is used with turbidity and birefringence measurements to explore the flow-induced crystallization dynamics in nanocomposite systems. Data presented indicates that clay can act as a nucleating agent in both flow and quiescent cases, and subsequently cause enhanced crystallization kinetics.
A very low cost, unglazed Thermosiphon Solar Collector constructed from polyethylene film and having an internal heat exchanger has been developed. The collector operates at relatively low temperature and low material stress, decreasing thermal degradation, material creep, and weight. Prototype systems have been built and tested, and processing equipment designed.
Joël Reignier, Richard Gendron, Michel Champagne, May 2006
This paper presents a thorough investigation of the continuous extrusion foaming of PLA using CO2 as the blowing agent. Detailed results are given for the plasticization induced as determined from on-line rheometry as well as resulting foam characteristics.
Ying Qin, Maria Rubino, Rafael Auras, Hugh Lockhart, May 2006
Sorption of benzaldehyde and moisture vapors in polypropylene resin, sheet, and containers was studied via a Rubotherm magnetic suspension microbalance. Polymer processing has an impact on polymer structure and morphology. A comparison of sorption among the three polypropylene forms demonstrated the marked impact of processing on inducing changes in the barrier properties of the polymer. The simultaneous sorption of organic compounds and moisture demonstrated the combined effect on the sorption.
We use a combinatorial method of investigation to obtain a near-universal scaling curve describing a wetting-dewetting transition line for polystyrene films of fixed thickness by introducing reduced temperature and surface energy variables dependent on molecular weight.
Utilizing a positive, dimensional approach to transport phenomena provides undergraduate plastics engineering technology students with a solid foundation upon which to build the fundamental principles of polymer processing. Students are encouraged to visualize, and sketch, on three scales: molecular, microscopic, and macroscopic. They also are encouraged to progress through three levels of learning: translation to a visual mode; solution of determinate problems; and the solution of indeterminate problems.
The properties of PET vary thru the depth of a blow molded article due to variation in blow up ratio. By blowing a preform constructed by injection molding three concentric sleeves, the wall of the blow molded article can be dissected and barrier and physical properties of discreet layers can be measured and correlated with process variables.
Yundong Wang, Joe Spuria, Hua Cai, Ryszard Brzoskowski, May 2006
Automotive sealing systems produced with thermoplastic vulcanizates (TPVs) can be modified to improve their functional performance and aesthetic appeal using techniques such as low friction co-extrusion coating, low friction spray coating, flock tape co-extrusion, electrostatic flocking, high gloss co-extrusion coating, high gloss colored or metallic tape co-extrusion, etc.
Cavity pressure control in injection molding is important to maintain product quality in injection molding process. The coolant flow rate and temperature are parameters affecting the cavity pressure profile during cooling stage. A coolant flow rate control system has been designed and implemented to provide consistent heat removal from the mold cycle-to-cycle. Good and effective cavity pressure control was obtained by controlling the coolant flow rate using a predictive controller.
In film casting, a polymer melt is extruded through a flat die before rapid cooling on a chill roll. We study experimentally the effects of draw ratio and molecular weight on polypropylene film formation. The temperature, width and velocity profiles in the air gap are measured. Neck-in and temperature profiles are affected by both draw ratio and molecular weight. The machine direction velocity decreases from the centerline value near the film edges.
The rate of restacking of platelets in extrusion of polypropylene clay nanocomposites can be reduced significantly by edge functionalization of the clay.
A chemical that is typically compatible with a given plastic can act as a stress-cracking agent in certain conditions. This presentation will address key contributing factors to ESC of polycarbonate components used in the medical device and health industries. Case studies will be presented.
Donggang Yao, Allen Y. Yi, Lei Li, Pratapkumar Nagarajan, May 2006
An embossing strategy involving a hot station and a cold station for sequentially heating and cooling the embossing tool was investigated to reduce cycle times in hot embossing polymer microstructures. Experimental studies showed that aluminum stamps with a thickness of 1.4 mm can be rapidly heated from room temperature to 200°C in 3 s using contact heating against a hot station at 250°C. Selected surface microfeatures including microchannels and microlens arrays were successfully embossed using a cycle time around 10 s.
The introduction of engineering to prospective students starts when they are in high school. They have already made some decisions about their career. This project involves 6th grade students designing a car body, then Penn State Erie students commercialize that design.
Jiong (Jenny) Shen, Yong Yang, L. James Lee, May 2006
Reinforcement in polymer nanocomposites was explored using polymer thin film technology. Polystyrene (PS) thin film spin-coated on the graphite substrate was used to resemble the interface between PS and carbon-based nanoparticles. Glass transition temperature (Tg) of the nano-confined polymer was observed to be higher than the bulk value, indicating the strong PS-substrate (graphite) interactions. The confinement becomes more pronounced with reduced film thickness. CO2-induced Tg depression was observed for this thin film system as well.
Thermoplastic elastomers have begun penetrating automotive sealing systems due to their ability to offer weight reduction, ease of processing, long term sealing, and recyclability versus traditional thermoset materials; however use in some visible applications has been limited by scratch resistance.We describe the general principles of the scratch mechanism and the existing laboratory techniques to assess a material’s scratch resistance. A relationship between a material’s physical properties, surface properties and its scratch resistance is discussed.
The current range of products designed to attain special effects continues to expand. Growth was driven by technological innovations and through modifications of existing pigments and additives. This paper will discuss this expanded pallet and the effects and applications for which they were intended.
An experimental protocol for measuring mass diffusivity during water debinding of metal injection molded parts is proposed. The diffusivity found, although dependent on part geometry and debinding time, can be averaged to model the polymer extraction.
84 countries and 60k+ stakeholders strong, SPE
unites
plastics professionals worldwide – helping them succeed and strengthening their skills
through
networking, events, training, and knowledge sharing.
No matter where you work in the plastics industry
value
chain-whether you're a scientist, engineer, technical personnel or a senior executive-nor
what your
background is, education, gender, culture or age-we are here to serve you.
Our members needs are our passion. We work hard so
that we
can ensure that everyone has the tools necessary to meet her or his personal & professional
goals.
Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:
Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.
Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.