SPE Library


The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 


Search SPE Library
    
    




Sort By:  Date Added   Publication Date   Title   Author

Conference Proceedings

Confinement in Layered Silicate Modified Thin Films
Laxmi K. Sahu, Bruce Gnade, Nandika Anne D’Souza, May 2006

In this paper we have studied the effect of montomorillonite layered silicate (MLS) nanoclay in polymer thin films by considering the effect of concentration and different film thickness on linear coefficient of thermal expansion (CTE) and glass transition temperature (Tg). CTE and Tg of thin polymer and nanocomposite films were calculated by using ellipsometry. They were also correlated with the interaction between the substrate and film and their chain mobility.

TPU/Nanoclay Composites Produced via Reactive Extrusion
Shane R. Parnell, May 2006

In this study, reactive extrusion was used to polymerize a typical thermoplastic polyurethane in situ with an organically modified layered silicate. Depending on the incorporation method, varying degrees of nanoclay dispersion were achieved. However, even with good nanoclay exfoliation, significant improvements in tensile and barrier properties were not achieved. Compared to analogous composites produced via melt compounding, composites produced via reactive extrusion exhibited superior properties.

Recycling Non-Halogen FR-PC/ABS
Paul Moy, May 2006

PC/ABS composites used extensively for laptop housings have grown significantly in the plastic waste stream. For these systems, required flame retardancy is done either through system design or composite formulations. Many manufacturers opt for non-halogen FRs such as triaryl phosphates. This paper will look at these options, measuring properties relative to recycling issues and using common industrial practices, present performance in a realistic recycling program. This study also considers additives found useful as stabilizers.

Designing with TPO for Innovative High Gloss Mold-In-Color Automotive Applications
LaRon M. Brown, Mitesh Shah, David Smith, David Edge, Sudhir Bafna, Matt Binkinz, May 2006

Thermoplastic Polyolefins (TPO) are used extensively in interior and exterior automotive applications due to their various advantages. The ultimate goal, to replace a painted part with high gloss mold-incolor (MIC) plastic, is now within reach with a new line of TPO products. Design Challenges, performance, system cost and colorability of this new technology are reviewed in this paper.

Modeling the Morphology Development of Ethylene Copolymers in Rotational Molding
H. Xu, A. Medina, C.T. Bellehumeur, May 2006

Morphology development was modeled using the phase field theory. The model successfully captures variations caused by changes in material formulation and molding conditions. Since morphological features are contributing factors to product performance, the model will be useful for process optimization.

Polymer Nanocomposites Fibers and Applications
Abdellah Ajji, Johanne Denault, Martin Bureau, Minh-Tan Ton-That, David Trudel-Boucher, Daniel Côté, May 2006

Different polymer nanocomposite (polypropylene-clay and polyethylene terephthalate-hydroxyapatite) fibers were produced by melt blowing. Fibers exhibit interesting mechanical properties attributed to polymer and nanoparticle orientation. Fibers could be organized and consolidated into 3D structures with retained improved mechanical properties. Structural and biomedical of these structures are presented.

Cool Colors in Plastics
Steve Goldstein, May 2006

Reference to cool colors are those that either absorb a minimum of solar energy or are transparent to solar energy. Last year we presented a paper showing work on colorants that were used in plastics that would meet TSR ratings in coatings applications. We have extended this work into PP, HDPE, PS and TPO.

Structure Development of Polypropylene/Ethylene-Butene Copolymer Blends in Melt Spinning
Jinhai Yang, James L. White, May 2006

Polypropylene/ethylene-butene copolymer blends have been melt-spun into filaments. The morphology and orientation of the filaments are studied by SEM, WAXD, and birefringence.

Mechanics of Foam-Filled Honeycombs
Andrey Beyle, Nsikakabasi Akpan, Christopher C. Ibeh, May 2006

Foam-filled honeycombs are prospective core materials for sandwich structures used in cryogenic isolation, hydrogen storage, etc. Mechanical properties of such materials are calculated according the developed models and studied experimentally. Such core has better mechanical properties and resistance to leakage than conventional ones.

The Calorimetric Glass Transition of Free Standing Polystyrene Thin Films
Yung P. Koh, Gregory B. McKenna, Sindee L. Simon, May 2006

The absolute heat capacity and the glass transition are measured for stacked polystyrene thin films using the step scan differential scanning calorimetric (DSC) method. We find that the absolute heat capacity in both the glass and liquid states decreases with decreasing film thickness and that the Tg also decreases with decreasing film thickness. The results indicate that an understanding of Tg at the nanoscale is elusive.

Measurement of the Bulk Modulus Using Pressurizable Dilatometry
Yan Meng, Sindee L. Simon, May 2006

A new piston-cylinder type pressurizable dilatometer controlled by a stepper motor has been developed to measure the time-dependent bulk modulus of viscoelastic materials. The PVT behavior and bulk modulus measurements for polystyrene are reported.

Solid State Structure and Properties of Novel High Performance Olefin Elastomers
A. Hiltner, H. Wang, D. Khariwala, W. Cheung, S. Chum, E. Baer, May 2006

Exciting new developments in polyolefin synthesis give rise to blocky olefin copolymers with properties typical of the thermoplastic-elastomers. This paper describes the materials science of these unique polymers including the microphase separated morphology and its relationship to elastomeric behavior.

Measurement of Fuel Barrier Properties of Rotational Molded Materials
B.A. Graham, D. Cook, May 2006

Future California Air Resources Board (CARB) and US Environmental Protection Agency (EPA) fuel emission standards will change the rotational molding industry. This study outlines an apparatus and test method useful to screen various materials relative to these new standards. Quantification of permeation rate and the identification of individual permeating components were conducted on actual coupons from rotational molded parts. A correlation to rotomolded tanks is presented with the preferred material candidates being explained.

NIR Radiation Management Part III - Rational Design of Novel NIR Absorbers for Plastics
Arno J. Boehm, May 2006

At ANTEC 2004 we presented a new class of highly efficient organic NIR absorbers based on the quaterrylenetetra-carboxylic diimide chromophore with a unique performance profile especially suited for laser transmission welding with 808 nm semiconductor lasers and other NIR radiation management applications where high absorptivities at a specific wavelength or in a narrow spectral band (so-called differential" absorptivities) are required.In the first part of this paper we present concepts on how to tune the absorption properties of this class of compounds by intelligent molecular design in order to access other common laser wavelengths. In the second part we will introduce a new class of broad band ("integral") inorganic NIR absorbers with absorption efficiencies hitherto reserved exclusively to organic materials in combination with photo- and thermostabilities typical for an inorganic plastics additive."

The Infinitely Variable Dynamic Shear Mixer, IDMX
Nick R. Schott, Károly Belina, Desi Csongor, May 2006

Mixing is one of the most important processes in the plastics industry. Two mechanisms occur in mixing: dispersive and distributive. Different types of mixers have been developed to fulfill both mechanisms.A special mixing unit was studied. Polycarbonate, ABS and regrind were investigated. The output of the mixer was investigated as a function of the screw speeds of the satellite extruders. Qualitative measurements were carried out to characterize the efficiency of mixing at different concentration levels of the components. Conclusions were made on the effect of the parameters of mixing.

Rheological Modeling of Plug-Assist Thermoforming
Hosseini Hossein, Berdyshev Boris Vasilivich, May 2006

Solving problems for thermoforming processes in production of axisymmetric thin walled plastics is investigated in this research work. A non-linear viscoelastic rheological model with a new strain energy function is suggested for improvement of physical properties of final product. For model validation, a quantitative relation between stress and technical parameters of plug-assist thermoforming is determined by comparison of theoretical and experimental results. This process with the proposed rheological model could be suggested for prevention from some technical defects such as wall thickness variations, physical instability during inflation-shrinkage, and warpage exhibited in the final part of a polymeric sheet thermoforming.

New Modification Technology for Polymer Composites
Kelly Williams, Bernard Bauman, May 2006

Using a unique reactive gas modification technology, new families of polyolefins can be manufactured that have highly oxidized and water-wetable surfaces (figure 1). These functionalized polyolefin particles can be used as performance additives in both thermoplastic and thermoset composites. The unique and highly modified surfaces enable non-polar polyolefins to become compatible with polar polymers. This is seen when the functionalized particles are used in melt blending with engineering plastics, when used as a dispersed solid phase in a thermoset such as polyurethane or epoxy, and when used in a latex paint formulation. When the polyolefin particle integrity is maintained, polymer-polymer composites are formed, which have unique physical properties that often have commercial value.The process of functionalizing the surface of polyolefin particles using reactive gases has many advantages. The process can be done at any scale and in batch or continuous configuration without many of the concerns associated with other unit operations, such as melt phase grafting or liquid processes. Further, the process of using highly reactive gas atmosphere processes, such as those using elemental fluorine initiation, are amenable to modifying most polymers except those that are already highly fluorinated, such as PTFE.

A Review On: 'Stack Mold'
Nainesh Shah, Abhishek P. Ambekar, May 2006

A mold's efficiency is determined by its cores, cavities and levels. Each cavity in a mold forms a single plastic product during each cycle" made by an injection-molding machine.A mold level (or "face") is the flat surface area of the mold containing the cavity. The simplest form of mold is a single-cavity single-level mold where the injection-molding machine injects plastic directly into the single cavity in order to form a molded plastic product. The single cavity can be extended to a multi-cavity layout which increases the number of plastic products molded in each cycle.Multi-cavity molds represent certain engineering challenges which are not present when molding products with a single-cavity mold. In order for the mold to work correctly plastic must be injected into each cavity at exactly the same time. As a result multi-cavity molds require hot runners a system of channels with manifolds designed to deliver molten plastic to each cavity at exactly the same moment. "Although stack molds are not new to injection molding industry they are still surrounded by myths and misconceptions regarding their applications benefits and requirements. The fact is stack molds can meet a variety of molding demands because they are available in configurations that can help users achieve the optimum tooling solution for their application.""

Study of the PTFE Rheology During Paste Extrusion Process
Shia Chung Chen, Lei-Ti Huang, Ping-Shun Hsu, Yu-Wan Lin, James Huang, May 2006

Polytetrafluoroethylene (PTFE) is a remarkable membrane material. Due to its high melting point, PTFE fine powder cannot be processed using conventional molding methods. Instead, techniques involving paste extrusion, rolling and sintering have to be employed. This research builds a simple PTFE capillary rheometer system, with accurate extrusion speed and extrusion pressure control, and investigate the rheology of PTFE paste during extrusion process. Due to the lower constant speed, the density variation of PTFE extrudate decreases from 1.75 g/cm3 (± 5.8%) to 1.68 g/cm3 (± 0.48%). In addition, different lubricant content (18 wt%, 20 wt%, and 22 wt%) was used to monitor the pressure drop at different extrusion speeds (0.5 mm/s, 1 mm/s, 2 mm/s) and reduction ratios (RR=26.47, 47.06, 80.06). It was found that higher lubricant content and high reduction ratio result in lower pressure drop. Lower extrusion speed also results in a better performance in extrudate formation.

Linear Viscoelastic Behaviors of Polypropylene
Yeh Wang, Kai-C. Wu, Jian-Z. Wang, May 2006

Polypropylene-layered silicate nanocomposites modified with different levels of maleated polypropylene (PPgMA) compatibilizers were prepared through melt compounding. Above a threshold loading the storage modulus G’ was shown to display a low-frequency plateau. The threshold loading level was found to be strongly correlated with the exfoliation of layered silicates. The samples with higher degree of exfoliation exhibited lower threshold loading level. Such threshold behavior is attributed to the existence, in the quiescent state, of mesoscopic domains composed of correlated silicate layers. Finally, melt rheology also demonstrated that the stress level imposed during melt compounding played an important role in clay exfoliation.










spe2018logov4.png
  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net