SPE Library

The SPE Library contains thousands of papers, presentations, journal briefs and recorded webinars from the best minds in the Plastics Industry. Spanning almost two decades, this collection of published research and development work in polymer science and plastics technology is a wealth of knowledge and information for anyone involved in plastics.

The SPE Library is just one of the great benefits of being an SPE member! Are you taking advantage of all of your SPE Benefits?

Not an SPE member? Join today!

Use % to separate multiple keywords. 

Search SPE Library
Keyword/Author:
After Date: (mm/dd/yy)  
 
Sort By:   Date Added  ▼  |  Publication Date  ▼  |  Title  ▼  |  Author  ▼
= Members Only
Conference Proceedings
Nanocolorants - More than Colored Nanoparticles
Arno J. Boehm, Alban Glaser, Oliver Koch, May 2004
Recently we have developed a novel class of colorants combining the advantages of both classical pigments and dyestuffs, the so-called NanoColorants. By nature these are nanocomposites consisting of hydrophobic dyestuffs molecularly dispersed and immobilized in highly crosslinked nanosized polymer particles prepared by a modified miniemulsion polymerization process. Whereas our initial development activities were focused primarily on a proper understanding of the basic polymerization process itself, and the incorporation of highly oleophilic dyestuffs, we have now extended our work to a number of other functional additives, ranging from optical brighteners and UV absorbers via copolymerizable fluorophores to all-organic opacifiers.
Using the Internet to Calibrate Color Spectrophotom Eters Back to a Traceable NIST: A Revolutionary Patented Technology for Color Control
Richard Knapp, May 2004
The Internet changes the way we conduct business strategically and on a day-to-day operational basis. For those managing color throughout a supply chain, the Internet offers revolutionary capabilities to improve your process and speed-to-market.Whether you’re a technician, lab manager, or quality control engineer, or whether you are responsible for color control within a multi-site enterprise, your challenges have several common denominators. First and foremost is that color makes a difference. It’s used as a litmus test for quality, which is compounded by extended supply chains around the world, increasingly compressed cycle times, and limits on resources and expertise in the field of color measurement and management.Another denominator is consumer demand for variety. To meet this demand, designers of apparel, toys, automobiles, consumer electronics, appliances and all types of household and office furnishings are increasing the number, frequency and complexity of their creative endeavors. While the products may be comprised of different raw materials (i.e. pigments, textiles, resins, metals, etc.), they do have one common denominator – color. Although color quality may be the ultimate discriminator, it’s often last on the list of priorities for designers, brand managers and manufacturing managers.
Color Matching Software from the Colorant Producer’s Perspective
Brian D. Coleman, Roger A. Reinicker, May 2004
The field of color science and color matching using mathematical models has come a long way in the past two decades. Today a number of companies can claim to have expertise in this field; each demonstrates this expertise in similar fashion by offering the coating, ink and plastic industries with colorimetry software targeted to make color matching and quality control accurate and faster. Still, however, issues remain. One’s ability to achieve accurate color matches can be compromised by differences in the type of substrates being measured, the form of the sample, the surface type and ultimately limitations of the colorant libraries themselves.In this paper, we will review the attributes of a colormatching program that was internally developed by a colorant producer. It will show that this software can be used as a predictor for application performance in the areas of heat stability and weathering. Lastly, the importance of accurate colorant libraries will be reviewed including an elaboration on issues associated with pigment dispersion.
Understanding the Effects of a Compounding Process on the Production of Co-Extruded Vinyl Sheet through the Utilization of Design of Experiments
Keith Effertz, May 2004
There are many ways to add color to the windows of your home. Methods include painting, powder coating, and use of capstock materials. One window manufacturer utilizes a co-extruded polyvinyl chloride (PVC) sheet, vacuum formed over a wood frame to provide a durable, low maintenance, and weatherable exterior. The market need for expanded color options has placed a need for understanding the key variables of success for this particular process. This paper will discuss the results of a Design of Experiment program conducted to determine the variables for successfully optimizing the production of the PVC sheet used in vacuum forming applications.
Perylimide Fluorescent Dyestuffs - Specialty Colorants with a Brilliant Future
Arno J. Boehm, Peter Blaschka, May 2004
Fluorescent colorants based on the perylene chromophore are well known for their exceptionally high photo-and thermostabilities, thus enabling their use in a number of demanding outdoor plastics applications. In this paper, chromophore design strategies leading to novel perylene based fluorophores covering additional coloristic regions, their unique property profiles, as well as recent advances in the development of state-of-the-art plastics applications are presented, ranging from emissive color filters for large scale LCD displays to fluorescent retroreflective sheets and films for traffic safety applications.
Degradation of Rubber Networks during the Ultrasonic Treatment
Victor V. Yashin, Avraam I. Isayev, Seok H. Kim, Chang K. Hong, Sang E. Shim, Jushik Yun, May 2004
The ultrasonic treatment of vulcanized rubbers under controllable conditions softens the rubber and creates a considerable amount of sol that makes possible a further reprocessing of the rubber. This paper demonstrates that a unified approach can be applied to analyze the numerous experimental data on structure of various unfilled and filled rubber vulcanizates ultrasonically treated under the continuous (with flow) and static (no flow) conditions. This approach is based on a model, which describes degradation of rubber network as a random scission of crosslinks and main chains due to the thermo-mechanical action of ultrasound.
Alternatives to Coatings for Automotive Plastics
Norm Kakarala, Tom Pickett, May 2004
Coatings or paints are generally pigmented polymeric dispersions or powders that are usually applied as a secondary process step to form a layer on the substrate. Eliminating coatings can drastically reduce the cost of the part as well as provide environmental advantages. In recent years there have been major advances in alternatives to coatings for automotive plastic parts. These advances are categorized into two main areas, material development and process development. From a materials perspective, new colorants and modifiers have been developed as additives to plastic resins that provide the aesthetic and physical and chemical properties required. From a process perspective, advances in process technology in areas of extrusion, co extrusion, injection molding, laminating films, and thermoforming of multiplayer sheets have been developed. This paper will examine these different alternatives to coatings for automotive plastic applications.
Structural Analysis of Components Molded Using Microcellular Foam Molding Process
Sameer Desai, Mohammed Ansari, W. Daniel Saunders, May 2004
It is known that microcellular foam molding process is viable process in reducing product cost, process cost and improvement of dimensional stability. Reducing the part weight negatively effects certain properties of the material. Specific effect on the property will determine applicability of such process for a given part design. In order to determine the applicability of such process it is important to use Finite Element Analysis (FEA) to verify designs before making any prototypes. The traditional FEA is used for solid materials to predict component performance. There is little understanding of how traditional Finite Elemental approach will work using microcellular foam material properties.The traditional solid plastic material is tested and correlated through testing and simulation. The same components molded using microcellular foam process will be tested and simulation method will be applied to understand if the same correlation can be obtained.
Abrasion Resistance Requirements for Automotive Interior Soft Skin Materials
Tom Pickett, May 2004
Interior automotive applications such as instrument panel (IP) topper pads, door trim, arm rests, and seats require soft skin materials that have good abrasion resistance. With the OEM’s move towards a polyvinyl chloride (PVC) free interior, materials such as thermoplastic polyolefin (TPO), thermoplastic polyurethane (TPU), thermoplastic elastomers (TPE), and polyurethanes have replaced PVC. The new materials have to meet the original equipment manufacturer (OEM’s) abrasion resistance requirements. This paper examines the OEM’s abrasion requirements for soft skin materials used in automotive interior applications and reveals the concern suppliers have with these requirements.
Characterizing Scratch and Mar Performance of Molded-In-Color Engineered Polyolefins for the Automotive Industry
Sudhir Bafna, Mitesh Shah, Dave Edge, May 2004
Various new and modified test methods are proposed to characterize the scratch and mar performance of molded-in-color [MIC] engineered polyolefins [EPO] for the automotive industry. Mar is characterized by gloss retention after abrasion in a crockmeter. Scratch is usually characterized by the Ford 5-Finger Scratch Test. However, scratch can also be characterized by the instrumented microscratcher. A method to quantify chip resistance is proposed. These test methods are illustrated by a comparison of the performance of a new MIC EPO [INDURE™] against that of conventional TPOs.
Peroxide Initiated Grafting of Alkoxysilanes from Poly(Isobutylene-Co-Para-Methylstyrene) Utilizing a Co-Rotating Twin Screw Extruder
Raymond L. Tabler, Thomas A. Peitz, Anne K. Shim, May 2004
Reactive processing of various alkoxysilanes with poly(isobutylene-co-para-methylstyrene) copolymers in a co-rotating, intermeshing twin-screw extruder produced novel, curable, grafted elastomers with excellent barrier properties. One of these polymers is currently used as a coating in a commercial application. The effect of formulation, screw design, and processing conditions upon polymer properties, economics, and side reactions were studied. Also investigated was how grafting level and efficiency are influenced by a number of inhibitor additives.
Achievable Weld Strengths for Various Thermoplastics Using the Clearweld® Process
Nicole M. Woosman, Robert A. Sallavanti, May 2004
The ability to join thermoplastics using traditional welding techniques has been studied extensively. Clearweld® is a relatively new through-transmission laser welding technique for welding infrared transmissive plastics. The range of plastics that are weldable using the Clearweld process has not been well documented.Various thermoplastics, including polycarbonate, PMMA, polysulfone, PETG, LDPE, and PVC, were welded using the Clearweld process to determine the capabilities and limitations of the process. The evaluation was based on tensile strengths of welded butt joints. The effect of material properties and quality of the welded parts was also evaluated to enable the engineer to design joints for maximum strength welds.
The Suitability of Polyvinyl Chloride / Ethylene Vinyl Acetate-Carbon Monoxide Terpolymer Blends for Medical Devices
D.C McConnell, G.M. McNally, W.R. Murphy, May 2004
An ethylene vinyl acetate-carbon monoxide terpolymer (EVA-CO) (Elvaloy® by Du Pont) was blended with two PVCs at various compositions. Several commercially available medical grade plasticised PVCs were also tested to assess the suitability of the blends for the current market.Mechanical analysis showed that the tensile and flexural modulus of the blends decreased significantly with increasing EVA-CO content, with the impact strength greatly improved. DMTA showed a single glass transition temperature (Tg) between that of the PVC and EVA components indicating complete miscibility over the range of concentrations studied. Rheological analysis showed only slight changes in shear viscosity with increasing EVA-CO content. The properties of most of the PVC/EVA-CO blends were similar to those of commercially available plasticised PVCs.
Coextrusion of TPU and BaSO4 Filled Medical-Grade TPU
Guangyu Lu, Dilhan M. Kalyon, Iskender Yilg?r, Emel Yilg?r, May 2004
Coextruded products for the medical device industry, involving layers of filled and unfilled polymers, are difficult to fabricate, especially due to the various degradative processes taking place especially when various stabilizers are not included in the medical-grade formulations. Significant differences in the degradation behavior and the subsequent rheological behavior of unfilled and BaSO4 filled TPUs generally give rise to severe fluctuations at the interfaces and poor coextruded products. It is shown here that the shear viscosity values of the filled and unfilled TPU need to be matched under the extrusion conditions to obtain acceptable coextruded medical products.
Modification of Biodegradable Polyesters with Inorganic Fillers
G. Chouzouri, M. Xanthos, May 2004
Composites produced by solution mixing of a biodegradable thermoplastic polyester based on butylene adipate / succinate, as well as a commercial polylactic acid, with surface coated and uncoated hydrotalcite inorganic minerals were studied. Materials were also melt-mixed in a twin screw extruder for comparison. Significant structural and morphological differences were noted following characterization of the composites by DSC, TGA and melt rheology. Results varied depending on the materials and the processing methods. Biodegradability and biocompatibility were evaluated by performing tests “in vitro” in the presence of a phosphate buffered saline solution.
The Mechanical and Rheological Characterisation of Implantable Medical Devices Formulated from Binary Mixtures of Cellulose Derivatives
G.P. Andrews, D.S. Jones, A.D. Woolfson, May 2004
This study highlights the potential associated with utilising multi-component polymeric gels to formulate materials that possess unique rheological and mechanical properties. The synergistic effect* and interaction between hydroxyethylcellulose (HEC) and sodium carboxymethylcellulose (NaCMC), polymers which are commonly employed as drug delivery platforms for implantable medical devices, have been determined using dynamic, continuous shear and texture profile analysis. * The difference between the actual response of a binary mixture and the sum of the two components comprising the mixture.Increases in polymer concentration resulted in an increase in G’, G’’ and ?’ whereas tan ? decreased. Similarly, significant increases were also apparent in continuous shear and texture analysis. All binary mixtures showed positive synergy values which may suggest associative interaction between the two components.
Micromoulding: Consideration of Processing Effects on Medical Materials
M.T. Martyn, B. Whiteside, P.D. Coates, P.S. Allan, G. Greenway, P. Hornsby, May 2004
New medical technologies are driving demand for smaller plastic components. In response, micro-injection moulding has evolved as a technology for the mass production of minute, intricate, polymer and composite components for medical and MEMS applications. There has been significant growth in the technology but little understanding of the effects of process dynamics on product properties. To address this knowledge gap a program of work with the objectives of enhancing the understanding of polymer processing-property interaction has been implemented in our laboratories. The impact of micro-scale processing on the rheological, mechanical and tribological properties of polymers and composites are being explored. Process conditions are potentially more severe on melts than those encountered in conventional moulding. This is especially pertinent when considering process sensitive biomaterials used in medical applications. A novel micro-injection compounding (MIC) machine has been developed minimising process stages and reducing material exposure to excessive residence times. This paper gives brief details of the effects of micromoulding process conditions on component surface morphology and mechanical properties measured using atomic force microscopy.
Medical Plastics Showing Bacteriostatic Properties
Mick Lambert, Gregory Mann, Timothy Kelly, Kimbrell Darnell, May 2004
Medical device developers, manufacturers and users have long sought coatings or additives that instill bacteriostatic properties to their devices. The bacteriostatic properties sought include reducing or eliminating device-related infections, while not interfering with the normal function of the device and its surroundings. One such bacteriostatic agent tested in polyvinylchloride (PVC) is an organic acid metal salt. This agent was compounded into PVC resin and subsequently melt processed into components for a urinary collection device. These components have been tested against pathogens most commonly associated with device-related urinary tract infection (UTI) via zone of inhibition (ZOI) and bacterial adherence tests. The components were also evaluated for interference with normal urine culture and urinalysis testing. Additionally, the normal processing, assembly and operation of the components and final device were evaluated for any type of interference from the bacteriostatic agent.
A Novel Seal/Peel System for Medical Packaging Applications
Ken Sprain, John Ozcomert, May 2004
Films with peelable sealant layers are well known in the packaging industry, and have been in widespread use for some time. This paper serves to highlight a further evolution in seal/peel technology made possible by the coextrusion of novel materials to produce a system with a very wide sealing window and narrow range of peel strengths upon opening. This is achieved by separating the sealing and peeling functions by assigning them to different layers of a multilayer polymeric structure. The use of separate layers for the sealing and peeling functions allows for the development of specialized systems that can provide significant advantages to the end user. This paper describes the seal/peel system and highlights some of the advantages it brings to medical packaging applications.
Investigating the High-Temperature Peel Properties of Medical Packaging Materials
D. Dixon, A.A. Crangle, R. McIIhagger, K. McCracken, May 2004
This paper proposes a novel measurement method, for investigating the high temperature peel properties of medical packaging materials using a modified tensile testing machine. This technique provides information on the temperature dependence of peel strength. High temperature peel strength is an important parameter during pouch manufacture, sterilization and also in service.A link exists between high temperature peel and hot tack. A bond with superior high temperature peel should also rapidly form a reliable bond after sealing, reducing the chance of failure during the pouch manufacture process. Sufficient peel strength at evaluated temperature is also necessary for Eto (Ethylene Oxide) sterilization. In addition, medical packaging materials may be subjected to high ambient temperatures during shipping, which can weaken the seal and lead to failure.The high temperature peel strengths of two grades of wax/polymer type adhesive coated Tyvek® were compared. The peel strength was found to decline with increasing temperature in a linear manner.


This item is only available to members

Click here to log in

If you are not currently a member,
you can click here to fill out a member application.

We're sorry, but your current web site security status does not grant you access to the resource you are attempting to view.




spe2018logov4.png
  Welcome Page

How to reference articles from the SPE Library:

Any article that is cited in another manuscript or other work is required to use the correct reference style. Below is an example of the reference style for SPE articles:

Brown, H. L. and Jones, D. H. 2016, May.
"Insert title of paper here in quotes,"
ANTEC 2016 - Indianapolis, Indiana, USA May 23-25, 2016. [On-line].
Society of Plastics Engineers
Available: www.4spe.org.

Note: if there are more than three authors you may use the first author's name and et al. EG Brown, H. L. et al.

If you need help with citations, visit www.citationmachine.net